Volume 9 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Kai Wang, Changsheng Su, Haoran Bi, Changwei Zhang, Di Cai, Yanhui Liu, Meng Wang, Biqiang Chen, Jens Nielsen, Zihe Liu, Tianwei Tan. The transition from 2G to 3G-feedstocks enabled efficient production of fuels and chemicals. Green Energy&Environment, 2024, 9(11): 1759-1770. doi: 10.1016/j.gee.2023.11.004
Citation: Kai Wang, Changsheng Su, Haoran Bi, Changwei Zhang, Di Cai, Yanhui Liu, Meng Wang, Biqiang Chen, Jens Nielsen, Zihe Liu, Tianwei Tan. The transition from 2G to 3G-feedstocks enabled efficient production of fuels and chemicals. Green Energy&Environment, 2024, 9(11): 1759-1770. doi: 10.1016/j.gee.2023.11.004

The transition from 2G to 3G-feedstocks enabled efficient production of fuels and chemicals

doi: 10.1016/j.gee.2023.11.004
  • For decades micoorganisms have been engineered for the utilization of lignocellulose-based second-generation (2G) feedstocks, but with the concerns of increased levels of atmospheric CO2 causing global warming there is an emergent need to transition from the utilization of 2G feedstocks to third-generation (3G) feedstocks such as CO2 and its derivatives. Here, we established a yeast platform that is capable of simultaneously converting 2G and 3G feedstocks into bulk and value-added chemicals. We demonstrated that by adopting 3G substrates such as CO2 and formate, the conversion of 2G feedstocks could be substantially improved. Specifically, formate could provide reducing power and energy for xylose conversion into valuable chemicals. Simultaneously, it can form a concentrated CO2 pool inside the cell, providing thermodynamically and kinetically favoured amounts of precursors for CO2 fixation pathways, e.g., the Calvin-Benson-Bassham (CBB) cycle. Furthermore, we demonstrated that formate could directly be utilized as a carbon source by yeast to synthesize endogenous amino acids. The engineered strain achieved a one-carbon (C1) assimilation efficiency of 9.2%, which was the highest efficiency observed in the co-utilization of 2G and 3G feedstocks. We applied this strategy for productions of both bulk and value-added chemicals, including ethanol, free fatty acids (FFAs), and longifolene, resulting in yield enhancements of 18.4%, 49.0%, and ~100%, respectively. The strategy demonstrated here for co-utilization of 2G and 3G feedstocks sheds lights on both basic and applied research for the up-coming establishment of 3G biorefineries.

     

  • loading
  • [1]
    W. Qiao; S. Xu; Z. Liu; X. Fu; H. Zhao; S. Shi, Bioresour. Technol. 364 (2022) 128095.
    [2]
    G. Hu; Z. Li; D. Ma; C. Ye; L. Zhang; C. Gao; L. Liu; X. Chen, Nat. Catal. 4 (2021) 395-406.
    [3]
    C.D. Scown, Trends Biotechnol. 40 (2022) 1415-1424.
    [4]
    P. Havlik; U.A. Schneider; E. Schmid; H. Bottcher; S. Fritz; R. Skalsky; K. Aoki; S.D. Cara; G. Kindermann; F. Kraxner; S. Leduc; I. Mccallum; A. Mosnier; T. Sauer; M. Obersteiner, Energy Policy 39 (2011) 5690-5702.
    [5]
    Z. Liu; K. Wang; Y. Chen; T. Tan; J. Nielsen, Nat. Catal. 3 (2020) 274-288.
    [6]
    J.C. Liao; L. Mi; S. Pontrelli; S. Luo, Nature reviews. Microbiology 14 (2016) 288-304.
    [7]
    Z. Liu; H. Li; X. Gao; X. Guo; S. Wang; Y. Fang; G. Song, Nat. Commun. 13 (2022) 4716.
    [8]
    D. Cai; P. Li; Z. Luo; P. Qin; C. Chen; Y. Wang; Z. Wang; T. Tan, Bioresour. Technol. 211 (2016) 117-124.
    [9]
    W. Deng; Y. Feng; J. Fu; H. Guo; Y. Guo; B. Han; Z. Jiang; L. Kong; C. Li; H. Liu; P.T.T. Nguyen; P. Ren; F. Wang; S. Wang; Y. Wang; Y. Wang; S.S. Wong; K. Yan; N. Yan; X. Yang; Y. Zhang; Z. Zhang; X. Zeng; H. Zhou, Green Energy Environ. 8 (2023) 10-114.
    [10]
    M. Wei; G. Li; H. Xie; W. Yang; H. Xu; S. Han; J. Wang; Y. Meng; Q. Xu; Y. Li; N. Chen; C. Zhang, Bioresour. Technol. 354 (2022) 127196.
    [11]
    R. Fujiwara; S. Noda; T. Tanaka; A. Kondo, Nat. Commun. (2020) 279.
    [12]
    M.T. Fernandez-Sandoval; J. Galindez-Mayer; F. Bolivar; G. Gosset; O.T. Ramirez; A. Martinez, Microb. Cell Fact. 18 (2019) 145.
    [13]
    R. Ledesma-Amaro; Z. Lazar; M. Rakicka; Z. Guo; F. Fouchard; A.-M.C.-L. Coq; J.-M. Nicaud, Metab. Eng. 38 (2016) 115-124.
    [14]
    W. Wei; P. Zhang; Y. Shang; Y. Zhou; B.C. Ye, Bioresour. Technol. 314 (2020) 123726.
    [15]
    N. Wei; E.J. Oh; G. Million; J.H. Cate; Y.S. Jin, ACS Synth. Biol. 4 (2015) 707-713.
    [16]
    Y.J. Lee; P. Hoang Nguyen Tran; J.K. Ko; G. Gong; Y. Um; S.O. Han; S.M. Lee, Front Bioeng. Biotechnol. 10 (2022) 826787.
    [17]
    S.B. Lee; M. Tremaine; M. Place; L. Liu; A. Pier; D.J. Krause; D. Xie; Y. Zhang; R. Landick; A.P. Gasch; C.T. Hittinger; T.K. Sato, Metab. Eng. 68 (2021) 119-130.
    [18]
    S. Watanabe; T. Kodaki; K. Makino, J. Biol. Chem. 280 (2005) 10340-10349.
    [19]
    S. Watanabe; A.A. Saleh; S.P. Pack; N. Annaluru; T. Kodaki; K. Makino, J. Biotechnol. 130 (2007) 316-319.
    [20]
    J.T. Cunha; P.O. Soares; A. Romani; J.M. Thevelein; L. Domingues, Biotechnol. Biofuels Bioprod. 12 (2019) 20.
    [21]
    J.H. Bae; M.J. Kim; B.H. Sung; Y.S. Jin; J.H. Sohn, Biotechnol. Biofuels Bioprod. 14 (2021) 223.
    [22]
    V. Endalur Gopinarayanan; N.U. Nair, Nat. Commun. 9 (2018) 1233.
    [23]
    X. Li; Y. Wang; G. Li; Q. Liu; R. Pereira; Y. Chen; J. Nielsen, Nat. Catal. 4 (2021) 783-796.
    [24]
    J. Shi; Y. Jiang; Z. Jiang; X. Wang; X. Wang; S. Zhang; P. Han; C. Yang, Chem. Soc. Rev. 44 (2015) 5981-6000.
    [25]
    J. Li; J. Ren; S. Li; G. Li; M.M.-J. Li; R. Li; Y.S. Kang; X. Zou; Y. Luo; B. Liu; Y. Zhao, Green Energy Environ. (2023), doi.org/10.1016/j.gee.2023.05.003.
    [26]
    H. Wang; Z. Liang; M. Tang; G. Chen; Y. Li; W. Chen; D. Lin; Z. Zhang; G. Zhou; J. Li; Z. Lu; K. Chan; T. Tan; Y. Cui, Joule 3 (2019) 1927-1936.
    [27]
    X. Tan; J. Nielsen, Chem. Soc. Rev. 51 (2022) 4763-4785.
    [28]
    M. Wang; Q. Zou; X. Dong; N. Xu; R. Shao; J. Ding; Y. Zhang; J. Qiao, Green Energy & Environ. 8 (2023) 893-903.
    [29]
    J. Li; Z. Zhang; W. Hu, Green Energy & Environ. 7 (2022) 855-857.
    [30]
    K. Wang; Y. Da; H. Bi; Y. Liu; B. Chen; M. Wang; Z. Liu; J. Nielsen; T. Tan, Renewable Energy 208 (2023) 331-340.
    [31]
    O. Yishai; S.N. Lindner; J. Gonzalez De La Cruz; H. Tenenboim; A. Bar-Even, Curr. Opin. Chem. Biol. 35 (2016) 1-9.
    [32]
    L. Calzadiaz-Ramirez; A.S. Meyer, Curr. Opin. Biotechnol. 73 (2022) 95-100.
    [33]
    S. Kim; S.N. Lindner; S. Aslan; O. Yishai; S. Wenk; K. Schann; A. Bar-Even, Nat. Chem. Biol. 16 (2020) 538-545.
    [34]
    O. Yishai; M. Bouzon; V. Doring; A. Bar-Even, ACS Synth. Biol. 7 (2018) 2023-2028.
    [35]
    J. Bang; C.H. Hwang; J.H. Ahn; J.A. Lee; S.Y. Lee, Nat. Microbiol. 5 (2020) 1459-1463.
    [36]
    R.A. Arkowitz; R.H. Abeles, Biochemistry 30 (1991) 4090-4097.
    [37]
    S. Gleizer; R. Ben-Nissan; Y.M. Bar-On; N. Antonovsky; E. Noor; Y. Zohar; G. Jona; E. Krieger; M. Shamshoum; A. Bar-Even; R. Milo, Cell 179 (2019) 1255-1263 e1212.
    [38]
    T. Gassler; M. Sauer; B. Gasser; M. Egermeier; C. Troyer; T. Causon; S. Hann; D. Mattanovich; M.G. Steiger, Nat. Biotechnol. 38 (2020) 210-216.
    [39]
    Y. Zhang; J. Zhou; Y. Zhang; T. Liu; X. Lu; D. Men; X.E. Zhang, ACS Synth. Biol. 10 (2021) 707-715.
    [40]
    B.M. Long; W.Y. Hee; R.E. Sharwood; B.D. Rae; S. Kaines; Y.L. Lim; N.D. Nguyen; B. Massey; S. Bala; S. Von Caemmerer; M.R. Badger; G.D. Price, Nat. Commun. 9 (2018) 3570.
    [41]
    J.H. Park; D.H. Kim; H.S. Kim; G.F. Wells; H.D. Park, Bioresour. Technol. 281 (2019) 318-325.
    [42]
    B. Endrodi; E. Kecsenovity; A. Samu; F. Darvas; R.V. Jones; V. Torok; A. Danyi; C. Janaky, ACS Energy Lett 4 (2019) 1770-1777.
    [43]
    F. Xia, J. Du, K. Wang, L. Liu, L. Ba, H. Liu, Y. Liu, 70 (2022) 11336-11343.
    [44]
    Y.J. Zhou; N.A. Buijs; Z. Zhu; J. Qin; V. Siewers; J. Nielsen, Nat. Commun. 7 (2016) 11709.
    [45]
    Y. Zhang; J. Wang; Z. Wang; Y. Zhang; S. Shi; J. Nielsen; Z. Liu, Nat. Commun. 10 (2019) 1053.
    [46]
    Y. Zhang; M. Su; N. Qin; J. Nielsen; Z. Liu, Microb. Cell Fact. 19 (2020) 226.
    [47]
    K. Wang; Y. Liu; Z. Wu; Y. Wu; H. Bi; Y. Liu; M. Wang; B. Chen; J. Nielsen; Z. Liu; T. Tan, Green Carbon 1 (2023) 65-74.
    [48]
    E. Fischer; N. Zamboni; U. Sauer, Anal. Biochem. 325 (2004) 308-316.
    [49]
    C. Su; L. Qi; D. Cai; B. Chen; H. Chen; C. Zhang; Z. Si; Z. Wang; G. Li; P. Qin, Renewable Energy 162 (2020) 1125-1131.
    [50]
    C. Su; C. Zhang; Y. Wu; Q. Zhu; J. Wen; Y. Wang; J. Zhao; Y. Liu; P. Qin; D. Cai, Renewable Energy 200 (2022) 592-600.
    [51]
    H. Bi; C. Xv; C. Su; P. Feng; C. Zhang; M. Wang; Y. Fang; T. Tan, Fermentation 8 (2022) 532.
    [52]
    S. Chen; Z. Xu; B. Ding; Y. Zhang; S. Liu; C. Cai; M. Li; B.E. Dale; M. Jin, Sci. Adv. 9 (2023) eadd8835.
    [53]
    T.K. Sato; M. Tremaine; L.S. Parreiras; A.S. Hebert; K.S. Myers; A.J. Higbee; M. Sardi; S.J. Mcilwain; I.M. Ong; R.J. Breuer; R. Avanasi Narasimhan; M.A. Mcgee; Q. Dickinson; A. La Reau; D. Xie; M. Tian; J.L. Reed; Y. Zhang; J.J. Coon; C.T. Hittinger; A.P. Gasch; R. Landick, PLoS Genet. 12 (2016) e1006372.
    [54]
    S.W. Jones; A.G. Fast; E.D. Carlson; C.A. Wiedel; J. Au; M.R. Antoniewicz; E.T. Papoutsakis; B.P. Tracy, Nat. Commun. 7 (2016) 12800.
    [55]
    Y.J. Li; M.M. Wang; Y.W. Chen; M. Wang; L.H. Fan; T.W. Tan, Sci. Rep. 7 (2017) 43875.
    [56]
    H. Moon; S. Kim; B.H. Jo; H.J. Cha, J. CO2 Util. 39 (2020) 101172.
    [57]
    C. Molina-Fernandez; P. Luis, J. CO2 Util. 47 (2021) 101475.
    [58]
    T.G. Cooper; H.G. Wood, J. Biol. Chem. 246 (1971) 5488-5490.
    [59]
    C. Zhan; X. Li; G. Lan; E.E.K. Baidoo; Y. Yang; Y. Liu; Y. Sun; S. Wang; Y. Wang; G. Wang; J. Nielsen; J.D. Keasling; Y. Chen; Z. Bai, Nat. Catal. 6 (2023) 435-450.
    [60]
    K. Paramasivan; S. Mutturi, Crit Rev Biotechnol 37 (2017) 974-989.
    [61]
    Y. Cao; R. Zhang; W. Liu; G. Zhao; W. Niu; J. Guo; M. Xian; H. Liu, Sci. Rep. 9 (2019) 95.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return