Turn off MathJax
Article Contents
Yining Wu, Peihan Li, Bin Yan, Xiaohan Li, Yongping Huang, Juncong Yuan, Xiang Feng, Caili Dai. A Salt-induced Tackifying Polymer for Enhancing Oil Recovery in High Salinity Reservoirs: Synthesis, Evaluation, and Mechanism. Green Energy&Environment. doi: 10.1016/j.gee.2023.10.006
Citation: Yining Wu, Peihan Li, Bin Yan, Xiaohan Li, Yongping Huang, Juncong Yuan, Xiang Feng, Caili Dai. A Salt-induced Tackifying Polymer for Enhancing Oil Recovery in High Salinity Reservoirs: Synthesis, Evaluation, and Mechanism. Green Energy&Environment. doi: 10.1016/j.gee.2023.10.006

A Salt-induced Tackifying Polymer for Enhancing Oil Recovery in High Salinity Reservoirs: Synthesis, Evaluation, and Mechanism

doi: 10.1016/j.gee.2023.10.006
  • Polymer flooding is an effective method widely applied for enhancing oil recovery (EOR) by reducing the mobility ratio between the injected water and crude oil. However, traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity. To overcome this challenge, we synthesized a zwitterion polymer (PAMNS) with salt-induced tackifying property through copolymerization of acrylamide and a zwitterion monomer, methylacrylamide propyl-N, Ndimethylbutylsulfonate (NS). NS monomer is obtained from the reaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide. In this study, the rheological properties, salt responsiveness, and EOR efficiency of PAMNS were evaluated. Results demonstrate that PAMNS exhibits desirable salt-induced tackifying characteristics, with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30 ×104mg L-1. Furthermore, high valence ions possess a much stronger effect on enhancing viscosity, manifested as Mg2+ > Ca2+ > Na+. Molecular dynamics simulations (MD) and fluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecular associations in high-salinity environments. It is because of the salt-induced tackifying, PAMNS demonstrates superior performance in polymer flooding experiments under salinity ranges from 5 ×104mg L-1 to 20 ×104mg L-1, leading to 10.38-19.83% higher EOR than traditional polymers.

     

  • loading
  • [1]
    Z. Li, D. N Espinoza, T. B Matthew. SPE J. 28(2023) 289-300.
    [2]
    L. He, F. Lin, X. Li, H. Sui, Z. Xu. Chem. Soc. Rev. 44(2015) 5446-5494.
    [3]
    M. Cheng, J. Jiang, J. Wang, J. Fan. ACS Sustain. Chem. Eng. 7(2019) 8195-8205.
    [4]
    A. Nabiyan, J.B. Max, F.H. Schacher. Chem. Soc. Rev. 51(2022) 995-1044.
    [5]
    R. Liu, W.F. Pu, D.J. Du. J. Ind. Eng. Chem. 46(2017) 80-90.
    [6]
    Y Zhang, X Tong, L Yu, L Meng, P Guo, S Xue. Green Energy Environ. 4(2019) 424-431.
    [7]
    S. Rajesh, V. Thiévenaz, A. Sauret. Soft Matter,18(2022) 3147-3156.
    [8]
    A. Das, G. Chauhan, A. Verma, P. Kalita, K. Ojha. J. Petrol. Sci. Eng. 167(2018) 559-567.
    [9]
    H. Gong, H. Zhang, L. Xu, K. Li, L. Yu, Y. Li, M. Dong. RSC Adv. 7(2017) 39564-39575.
    [10]
    M. Concilio, V.P. Beyer, C.R. Becer. Polym. Chem. 13(2022) 6423-6474.
    [11]
    W.F. Pu, R. Liu, B. Li, F.Y. Jin, Q. Peng, S. Lin, D.J. Du, F.S. Yao. RSC Adv. 5(2015) 88002-88013.
    [12]
    L. Li, X. Li, S. Zhang, H. Yan, X. Qiao, H. He, T. Zhu, B. Tang. Green Energy Environ. 7(2022):840-853.
    [13]
    T.S. Muzata, J.P. L., S. Bose. Phys. Chem. Chem. Phys. 22(2022) 20167-20188.
    [14]
    D. Kawale, E. Marques, Pacelli L. J. Zitha, T.K. Michiel, R.R. William, E.B. Pouyan. Soft Matter, 13(2017) 765-775.
    [15]
    F. M. Mohamed, H. Eirik, A.A. Safwat, A.H. Ibnelwaleed, A.K. Malcolm. Green Chem. 24(2022) 7171-7183.
    [16]
    K. Durgesh, B. Gelmer, S. Shaurya, L.J.Zitha Pacelli, T.K. Michiel, R.R. William, E.B. Pouyan. Soft Matter, 13(2017) 8745-8755.
    [17]
    J. Zhang, S. Xu, H. Jin, G. Liu. Chem. Commun. 56(2020) 10930-10933.
    [18]
    R. Hu, Nelson L. C. Leung, B.Z. Tang. Chem. Soc. Rev. 43(2014) 4494-4562.
    [19]
    A. Chu, M. Yang, J. Chen, J. Zhao, J. Fang, Z. Yang, H. Li. Green Energy Environ. (2023). (DOI: 10.1016/j.gee.2023.04.003).
    [20]
    Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu. Green Energy Environ. 1(2016) 18-42.
    [21]
    B Li, Y Liu, X Zhang, P He, H Zhou. Green Energy Environ. 4(2019) 3-19.
    [22]
    C. Hu, J.H. Park, N.Y. Kang, X. Zhang, Y.J. Lee, S.W. Jeong, Y.M. Lee. J. Mater. Chem. A, 11(2023) 2031-2041.
    [23]
    J. Li, H. Zhu, X. Wang, D.R. MacFarlane, M. Armand, M. Forsyth. J. Mater. Chem. A, 3(2015) 19989-19995.
    [24]
    H. Zhang, M. Zhu, W. Zhao, S. Li, G. Feng. Green Energy Environ. 3(2018) 120-128.
    [25]
    X Li, IC Bourg. Atmos. Chem. Phys. 23(2023) 2525-2556.
    [26]
    F. Candau, S. Biggs, A. Hill, J. Selb. Prog. Org. Coat. 24(1994) 11-19.
    [27]
    M. Mamusa, P. Tempesti, A. Bartolini, E. Carretti, A.F. Ghobadi, J. Smets, Y.G. Aouad, P. Baglioni. Nanoscale, 11(2019) 6635-6643.
    [28]
    Z. Hu, G. Chen. J. Mater. Chem. A, 2(2014) 13593-13601.
    [29]
    V.F. Korolovych, A. Erwin, A. Stryutsky, H. Lee, W.T. Heller, V.V. Shevchenko, L.A. Bulavin, V.V. Tsukruk. Macromolecules, 51(2018) 4923-4937.
    [30]
    K. T. Huang, K. Ishihara, C. J. Huang. Biomacromolecules, 20(2019) 3524-3534.
    [31]
    M. Z. Li, J. H. Li, X. S. Shao, J. Miao, J. B. Wang, Q. Q. Zhang, X.P. Xu. J. Membrane Sci. 405-406(2012) 141-148.
    [32]
    Y. Chang, Y. Shih, C. Lai, H. Kung, S. Jiang. Adv. Funct. Mater. 23(2013) 1100-1110.
    [33]
    M. Sun, L. Yang, P. Jose, L. Wang, J. Zweit. J. Mater. Chem. B, 1(2013) 6137-6146.
    [34]
    S. Xiao, Y. Zhang, M. Shen, F. Chen, P. Fan, M. Zhong, B. Ren, J. Yang, J. Zheng. Langmuir, 34(2018) 97-105.
    [35]
    B. Liang, E. Jia, X. Yuan, G. Zhang, Z. Su. Chem. Eng. J. 401(2020) 126114(1-9).
    [36]
    D. Li, Q. Wei, C. Wu, X. Zhang, Q. Xue, T. Zheng, M. Cao. Adv. Colloid Interface. 278(2020) 102141.
    [37]
    R. Iwata, P. Suk-In, V. P. Hoven, A. Takahara, K. Akiyoshi, Y. Iwasaki. Biomacromolecules, 5(2004) 2308-2314.
    [38]
    Y. Liu, J. Wu, H. Liang, Z. Jin, L. Sheng, X. Hu, N. Zhu, K. Guo. Green Energy Environ. 6(2021) 578-584.
    [39]
    M. Kobayashi, Y. Terayama, M. Kikuchi, A. Takahara. Soft Matter, 9(2013) 5138–5148.
    [40]
    R. Zhang, S. Ma, Q. Wei, Q. Ye, B. Yu, V.D.G. Jasper, F. Zhou. Macromolecules, 48(2015) 6186-6196.
    [41]
    R. Quintana, M. Gosa, D. Jańczewski, E. Kutnyanszky, G. J. Vancso. Langmuir, 29(2013) 10859-10867.
    [42]
    S. Xiao, B. Ren, L. Huang, M. Shen, Y. Zhang, M. Zhong, J. Yang, J. Zheng. Curr. Opin. Chem. Eng. 19(2018) 86-93.
    [43]
    C. M. Heil, A. Jayaraman. Soft Matter, 18(2022) 8175-8187.
    [44]
    A. B. Asha, Y. Chen, R. Narain. Chem. Soc. Rev. 50(2021) 11668-11683.
    [45]
    N. N. Nguyen, A. V. Nguyen, L. X. Dang. Fuel, 197(2017) 488-496.
    [46]
    Y. Liu, D. Zhang, B. Ren, X. Gong, L. Xu, Z.Q. Feng, Y. Chang, Y. He, J. Zheng. J. Mater. Chem. B, 8(2020) 3814-3828.
    [47]
    X Li, IC Bourg. Environ. Sci. Technol. 57(2023) 13092-13103.
    [48]
    P. S. Liu, C. Qiang, X. Liu, B. Yuan, S. C. Lin. Biomacromolecules, 10(2009) 2809-2816.
    [49]
    G. Li, H. Xue, C. Gao, F. Zhang, S. Jiang. Macromolecules, 43(2010) 14-16.
    [50]
    G. Poulladofonou, K. Neumann. Polym. Chem. 13(2022) 4416-4420.
    [51]
    T Du, B Li, X Wang, B Yu, X Pei, W.T.S. Huck, F. Zhou. Angew. Chem. Int. Edit. 55(2016) 4260-4264.
    [52]
    Y.Y. Yuan, C.Q. Mao, X.J. Du, J.Z. Du, F. Wang, J. Wang. Adv. Mater. 24(2012) 5476-5480.
    [53]
    J. Zheng, M. Li, Y. Yao, X. Zhang, L. Wang. J. Mater. Chem. A, 5(2017) 13730-13739.
    [54]
    P. Hemström, M. Szumski, K. Irgum. Anal. Chem. 78(2006) 7098-7103.
    [55]
    M. Kobayashi, Y. Terayama, N. Hosaka, M. Kaido, A. Suzuki, N. Yamada, N. Torikai, K. Ishihara, A. Takahara. Soft Matter, 3(2007) 740-746.
    [56]
    P. Mary, D. D. Bendejacq, M. P. Labeau, P. Dupuis. J. Phys. Chem. B, 111(2007) 7767-7777.
    [57]
    Q Wang, Z Meng, J Li, S Peng, Z Xiang. Green Energy Environ. 7(2022) 948-956.
    [58]
    S Hou, Y Sun, X Jiang, P Zhang. Green Energy Environ. 5(2020) 484-491.
    [59]
    Y. Li, C. Dai, Y. Wu, K. Xu, Y. Wang. AIChE J. 66(2020) e16229.
    [60]
    L. E. Rodd, J. J. Cooper-White, D. V. Boger, G. H. Mckinley. J. Non-Newton. Fluid, 143(2007) 170-191.
    [61]
    M.L. Schneider, J.A. Campbell, A.D. Slattery, W.M. Bloch. Chem. Commun. 58(2022) 12122-12125.
    [62]
    L. Yuan, X. Yao, H. Yang. Nanoscale, 11(2019) 21554-21568.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return