Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Manman Xu, Shiqi Fu, Yukai Wen, Wei Li, Qiongfang Zhuo, Haida Zhu, Zhikeng Zheng, Yuwen Chen, Anqi Wang, Kai Yan. Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications. Green Energy&Environment, 2024, 9(3): 584-595. doi: 10.1016/j.gee.2023.10.005
Citation: Manman Xu, Shiqi Fu, Yukai Wen, Wei Li, Qiongfang Zhuo, Haida Zhu, Zhikeng Zheng, Yuwen Chen, Anqi Wang, Kai Yan. Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications. Green Energy&Environment, 2024, 9(3): 584-595. doi: 10.1016/j.gee.2023.10.005

Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications

doi: 10.1016/j.gee.2023.10.005
  • Dwindling energy sources and a worsening environment are huge global problems, and biomass wastes are an under-exploited source of material for both energy and material generation. Herein, self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes (ST-DDLGCs) were synthesized via a facile and scalable strategy in response to these challenges. ST-DDLGCs exhibited a large surface area (1731.51 m2 g-1) and high pore volume (0.76 cm3 g-1), due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls. In the ST-DDLGC/PMS system, the degradation efficiency of capecitabine (CAP) reached ~97.3% within 120 min. Moreover, ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9, and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies (i.e., H2PO4-, NO3-, Cl- and HCO3-), in which a 1O2-dominated oxidation was identified and non-radical mechanisms were deduced. Additionally, ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance, with specific capacitances of up to 328.1 F g-1 at 0.5 A g-1, and cycling stability of up to 98.6% after 10,000 cycles at a current density of 2 A g-1. The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure, which facilitated mass transfer and presented numerous active sites. The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices.

     

  • loading
  • [1]
    A. Singh, R. Sharma, D. Pant, P. Malaviya, Sci. Total Environ. 774 (2021) 145676.
    [2]
    Y. Yang, S. Ye, C. Zhang, G. Zeng, X. Tan, B. Song, P. Zhang, H. Yang, M. Li, Q. Chen, J. Hazard. Mater. 404 (2021) 124052.
    [3]
    Z. Chen, M. Zhang, Y. Wang, Z. Yang, D. Hu, Y. Tang, K. Yan, Green Energy Environ. 6 (2021) 929-937.
    [4]
    J. Zhou, S. Zhang, Y.N. Zhou, W. Tang, J. Yang, C. Peng, Z. Guo, Electrochem. Energy Rev. 4 (2021) 219-248.
    [5]
    P. Zhang, X. Tan, S. Liu, Y. Liu, G. Zeng, S. Ye, Z. Yin, X. Hu, N. Liu, Chem. Eng. J. 378 (2019) 122141.
    [6]
    X. Wei, B. Qiu, L. Xu, Q. Qin, W. Zhang, Z. Liu, F. Wei, Y. Lv, J. Energy Storage 62 (2023) 106900.
    [7]
    J. Yang, Z. Chen, H. Lin, P. Feng, Y. Xie, Y. Liang, M. Zheng, X. Liu, Y. Liu, Y. Xiao, ACS Appl. Energy Mater. 5 (2022) 12090-12098.
    [8]
    X. Kong, Y. Zhang, P. Zhang, X. Song, H. Xu, Appl. Surf. Sci. 516 (2020) 146162.
    [9]
    X. Yuan, J. Hu, S. Li, M. Yu, Environ. Pollut. 266 (2020) 115340.
    [10]
    A. Wang, H. Wang, H. Deng, S. Wang, W. Shi, Z. Yi, R. Qiu, K. Yan, Appl. Catal. B Environ. 248 (2019) 298-308.
    [11]
    S. Tang, L. Xu, X. Yu, S. Chen, H. Li, Y. Huang, J. Niu, Chem. Eng. J. 413 (2021) 127489.
    [12]
    M.B. Cristovao, A. Bento-Silva, M.R. Bronze, J.G. Crespo, V.J. Pereira, Sci. Total Environ. 786 (2021) 147477.
    [13]
    C. Nassour, S. Nabhani-Gebara, S.J. Barton, J. Barker, Sci. Total Environ. 800 (2021) 149598.
    [14]
    L. Zhu, J. Ji, J. Liu, S. Mine, M. Matsuoka, J. Zhang, M. Xing, Angew. Chem. Int. Ed. 59 (2020) 13968-13976.
    [15]
    A. Wang, Z. Zheng, H. Wang, Y. Chen, C. Luo, D. Liang, B. Hu, R. Qiu, K. Yan, Appl. Catal. B Environ. 277 (2020) 119171.
    [16]
    A. Wang, S. Guo, Z. Zheng, H. Wang, X. Song, H. Zhu, Y. Zeng, J. Lam, R. Qiu, K. Yan, J. Hazard. Mater. 434 (2022) 128905.
    [17]
    H. Zhou, J. Peng, J. Li, J. You, L. Lai, R. Liu, Z. Ao, G. Yao, B. Lai, Water Res. 188 (2021) 116529.
    [18]
    W.D. Oh, T.T. Lim, Chem. Eng. J. 358 (2019) 110-133.
    [19]
    W. Ren, L. Xiong, X. Yuan, Z. Yu, H. Zhang, X. Duan, S. Wang, Environ. Sci. Technol. 53 (2019) 14595-14603.
    [20]
    J. Fan, H. Qin, S. Jiang, Chem. Eng. J. 359 (2019) 723-732.
    [21]
    H. Wang, W. Guo, B. Liu, Q. Si, H. Luo, Q. Zhao, N. Ren, Appl. Catal. B Environ. 279 (2020) 119361.
    [22]
    W. Ma, N. Wang, Y. Fan, T. Tong, X. Han, Y. Du, Chem. Eng. J. 336 (2018) 721-731.
    [23]
    J. Li, J. Zhu, L. Fang, Y. Nie, N. Tian, X. Tian, L. Lu, Z. Zhou, C. Yang, Y. Li, Sep. Purif. Technol. 240 (2020) 116617.
    [24]
    Y. Gao, Z. Chen, Y. Zhu, T. Li, C. Hu, Environ. Sci. Technol. 54 (2020) 1232-1241.
    [25]
    X. Tian, P. Gao, Y. Nie, C. Yang, Z. Zhou, Y. Li, Y. Wang, Chem. Commun. 52 (2016) 64-67.
    [26]
    E.T. Yun, H.Y. Yoo, H. Bae, H.I. Kim, J. Lee, Environ. Sci. Technol. 51 (2017) 10090-10099.
    [27]
    S. Ye, G. Zeng, X. Tan, H. Wu, J. Liang, B. Song, N. Tang, P. Zhang, Y. Yang, Q. Chen, X. Li, Appl. Catal. B Environ. 269 (2020) 118850.
    [28]
    R. Luo, M. Li, C. Wang, M. Zhang, M.A. Nasir Khan, X. Sun, J. Shen, W. Han, L. Wang, J. Li, Water Res. 148 (2019) 416-424.
    [29]
    X. Duan, C. Su, L. Zhou, H. Sun, A. Suvorova, T. Odedairo, Z. Zhu, Z. Shao, S. Wang, Appl. Catal. B Environ. 194 (2016) 7-15.
    [30]
    M. Kohantorabi, G. Moussavi, S. Giannakis, Chem. Eng. J. 411 (2021) 127957.
    [31]
    H. Wang, W. Guo, B. Liu, Q. Wu, H. Luo, Q. Zhao, Q. Si, F. Sseguya, N. Ren, Water Res. 160 (2019) 405-414.
    [32]
    Y. Tu, Angew. Chem. Int. Ed. 55 (2016) 10210-10226.
    [33]
    Z. Xu, X. Chen, Z. Zhong, L. Chen, Y. Wang, Am. J. Chin. Med. 39 (2011) 15-27.
    [34]
    C. Zhao, C. Zhang, Z. Xing, Z. Ahmad, J.S. Li, M.W. Chang, Int. J. Biol. Macromol. 121 (2019) 1160-1178.
    [35]
    M. Xu, Y. Huang, R. Chen, Q. Huang, Y. Yang, L. Zhong, J. Ren, X. Wang, Adv. Compos. Hybrid Mater. 4 (2021) 1270-1280.
    [36]
    S. Chen, L. Blaney, P. Chen, S. Deng, M. Hopanna, Y. Bao, G. Yu, Front. Environ. Sci. Eng. 13 (2019) 59.
    [37]
    Y. Wang, Z. Chen, M. Zhang, Y. Liu, H. Luo, K. Yan, Green Energy Environ. 7 (2022) 1053-1061.
    [38]
    Y. Li, Y. Liang, Y. Liang, Y. Liu, Y. Xiao, J. Power Sources 507 (2021) 230289.
    [39]
    B. Liu, M. Zhang, Y. Liu, Y. Wang, K. Yan, Green Energy Environ. 8 (2023) 874-882.
    [40]
    W. Zhang, Z. Xie, C. Lan, Y. Yang, M. Zheng, H. Hu, Y. Xiao, Y. Liu, Y. Liang, J. Mater. Chem. A 10 (2022) 8958-8965.
    [41]
    Y. Yang, D. Chen, W. Han, Y. Cheng, B. Sun, C. Hou, G. Zhao, D. Liu, G. Chen, J. Han, X. Zhang, Carbon 205 (2023) 1-9.
    [42]
    A. Wang, Z. Zheng, R. Li, D. Hu, Y. Lu, H. Luo, K. Yan, Green Energy Environ. 4 (2019) 414-423.
    [43]
    S. Sarkar, A. Arya, U.K. Gaur, A. Gaur, Biomass Bioenergy 142 (2020) 105730.
    [44]
    H. Lin, Z. Tan, J. Yang, R. Mo, Y. Liang, M. Zheng, H. Hu, H. Dong, X. Liu, Y. Liu, Y. Xiao, J. Energy Storage 53 (2022) 105036.
    [45]
    X. Wei, B. Qiu, H. Tian, Y. Lv, W. Zhang, Q. Qin, Z. Liu, F. Wei, Appl. Surf. Sci. 615 (2023) 156280.
    [46]
    J. Chen, K. Fang, Q. Chen, J. Xu, C.P. Wong, Nano Energy 53 (2018) 337-344.
    [47]
    X. Yang, T. Lv, J. Qiu, Small (2023) 2300336.
    [48]
    Y. Long, S. Bu, Y. Huang, Y. Shao, L. Xiao, X. Shi, Chemosphere 216 (2019) 545-555.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return