Volume 9 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Yan Liu, Zhen-Yi Gu, Yong-Li Heng, Jin-Zhi Guo, Miao Du, Hao-Jie Liang, Jia-Lin Yang, Kai-Yang Zhang, Kai Li, Xing-Long Wu. Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: From lowered Fe-3d orbital energy level to advanced potassium-ion batteries. Green Energy&Environment, 2024, 9(11): 1724-1733. doi: 10.1016/j.gee.2023.10.004
Citation: Yan Liu, Zhen-Yi Gu, Yong-Li Heng, Jin-Zhi Guo, Miao Du, Hao-Jie Liang, Jia-Lin Yang, Kai-Yang Zhang, Kai Li, Xing-Long Wu. Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: From lowered Fe-3d orbital energy level to advanced potassium-ion batteries. Green Energy&Environment, 2024, 9(11): 1724-1733. doi: 10.1016/j.gee.2023.10.004

Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: From lowered Fe-3d orbital energy level to advanced potassium-ion batteries

doi: 10.1016/j.gee.2023.10.004
  • KFeSO4F (KFSF) is considered a potential cathode due to the large capacity and low cost. However, the inferior electronic conductivity leads to poor electrochemical performance. Defect engineering can facilitate the electron/ion transfer by tuning electronic structure, thus providing favorable electrochemical performance. Herein, through the regulation of surface defect engineering in reduced graphene oxide (rGO), the Fe-C bonds were formed between KFSF and rGO. The Fe-C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF. Thus, the KFSF@rGO delivers a high capacity of 119.6 mAh g-1. When matched with a graphite@pitch-derived S-doped carbon anode, the full cell delivers an energy density of 250.5 Wh kg-1 and a capacity retention of 81.5% after 400 cycles. This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.

     

  • loading
  • [1]
    X.-X. Luo, W.-H. Li, H.-J. Liang, H.-X. Zhang, K.-D. Du, X.-T. Wang, X.-F. Liu, J.-P. Zhang, and X.-L. Wu, Angew. Chem. Int. Ed. 61 (2022) e202117661.
    [2]
    D. Qiu, and Y. Hou, Green Energy Environ. 8 (2023) 115-140.
    [3]
    T. Hosaka, K. Kubota, A.S. Hameed, and S. Komaba, Chem. Rev. 120 (2020) 6358-6466.
    [4]
    X. Chang, N. Sun, H. Zhou, R.A. Soomro, and B. Xu, Chin. Chem. Lett. 34 (2023) 107312.
    [5]
    G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, and W. Zhu, Green Energy Environ. 8 (2023) 1081-1090.
    [6]
    D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo, W. Liu, L. Yang, J. Lu, K. Amine, and Z. Chen, Chem. Soc. Rev. 49 (2020) 5407-5445.
    [7]
    C. Li, Y. Li, Z. Chen, Y. Zhou, F. Bai, and T. Li, Chin. Chem. Lett. 34 (2023) 107852.
    [8]
    R. Cai, L. Bao, W. Zhang, W. Xia, C. Sun, W. Dong, X. Chang, Z. Hua, R. Shao, T. Fukuda, et al., InfoMat 5 (2023) e12364.
    [9]
    Y. Zhou, S. Tian, M.-Y. Jia, P.-B. Gao, G.-C. Yin, X.-M. Wang, J.-L. Mu, J. Zhou, and T. Zhou, Rare Metals 42 (2023) 2622-2632.
    [10]
    Y. Du, Z. Zhang, Y. Xu, J. Bao, and X. Zhou, Acta Phys. -Chim. Sin 38 (2022) 2205017.
    [11]
    Z. Sun, Y. Chen, B. Xi, C. Geng, W. Guo, Q. Zhuang, X. An, J. Liu, Z. Ju, and S. Xiong, Energy Storage Mater. 53 (2022) 482-491.
    [12]
    L. Wang, B. Zhang, B. Wang, S. Zeng, M. Zhao, X. Sun, Y. Zhai, and L. Xu, Angew. Chem. Int. Ed. 60 (2021) 15381-15389.
    [13]
    L. Wang, J. Wang, L. Wang, M. Zhang, R. Wang, and C. Zhan, Int. J. Miner. Metall. Mater. 29 (2022) 925-941.
    [14]
    Y. Xu, H. Zhang, T. Ding, R. Tian, D. Sun, M.-S. Wang, and X. Zhou, Sci. China Chem. 65 (2022) 1807-1816.
    [15]
    J. Hao, H. Xia, A.M. Rao, Y. He, J. Zhou, and B. Lu, Energy Storage Mater. 53 (2022) 148-155.
    [16]
    W. Zhang, J. Yin, W. Wang, Z. Bayhan, and H.N. Alshareef, Nano Energy 83 (2021) 105792.
    [17]
    X. Zhang, Y. Yang, X. Qu, Z. Wei, K. Zheng, H. Yu, and F. Du, Adv. Funct. Mater. 29 (2019) 1905679.
    [18]
    Z.M. Liu, J. Wang, and B.A. Lu, Sci. Bull. 65 (2020) 1242-1251.
    [19]
    L. Deng, J. Qu, X. Niu, J. Liu, J. Zhang, Y. Hong, M. Feng, J. Wang, M. Hu, L. Zeng, et al., Nat. Commun. 12 (2021) 2167.
    [20]
    W. Zhang, W. Huang, and Q. Zhang, Chem.-Eur. J. 27 (2021) 6131-6144.
    [21]
    Y.-S. Xu, S.-Y. Duan, Y.-G. Sun, D.-S. Bin, X.-S. Tao, D. Zhang, Y. Liu, A.-M. Cao, and L.-J. Wan, J. Mater. Chem. A 7 (2019) 4334-4352.
    [22]
    W. Wang, B. Ji, W. Yao, X. Zhang, Y. Zheng, X. Zhou, P. Kidkhunthod, H. He, and Y. Tang, Sci. China Mater. 64 (2021) 1047-1057.
    [23]
    K. Chihara, A. Katogi, K. Kubota, and S. Komaba, Chem. Comm. 53 (2017) 5208-5211.
    [24]
    J. Liao, Q. Hu, X. He, J. Mu, J. Wang, and C. Chen, J. Power Sources 451 (2020) 227739.
    [25]
    J. Xu, L. Duan, J. Liao, H. Tang, J. Lin, and X. Zhou, Green Energy Environ. 8 (2023) 1469-1478.
    [26]
    J. Dong, J. Liao, X. He, Q. Hu, Y. Yu, and C. Chen, Chem. Commun. 56 (2020) 10050-10053.
    [27]
    J. Liao, Q. Hu, Y. Du, J. Li, L. Duan, J. Bao, and X. Zhou, Sci. Bull. 67 (2022) 2208-2215.
    [28]
    S.S. Fedotov, A.S. Samarin, and E.V. Antipov, J. Power Sources 480 (2020) 228840.
    [29]
    H. Kim, D.-H. Seo, M. Bianchini, R.J. Clement, H. Kim, J.C. Kim, Y. Tian, T. Shi, W.-S. Yoon, and G. Ceder, Adv. Energy Mater. 8 (2018) 1801591.
    [30]
    S. Khan, R.P. Raj, T.V.R. Mohan, S. Bhuvaneswari, U.V. Varadaraju, and P. Selvam, J. Electroanal. Chem. 848 (2019) 113242.
    [31]
    X. Rui, W. Sun, C. Wu, Y. Yu, and Q. Yan, Adv. Mater. 27 (2015) 6670-6676.
    [32]
    W. Zhang, Z. Zhang, H. Li, D. Wang, T. Wang, X. Sun, J. Zheng, and Y. Lai, ACS Appl. Mater. Interfaces 11 (2019) 35746-35754.
    [33]
    X. Li, S. Jiang, S. Li, J. Yao, Y. Zhao, T. Bashir, S. Zhou, S. Yang, W. Li, W. Zhu, et al., J. Mater. Chem. A 9 (2021) 11827-11838.
    [34]
    J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng, Q. Shen, Y. Hou, H. Qi, X. Xing, L. Jiao, and J. Chen, Angew. Chem. Int. Ed. 62 (2023) e202219230.
    [35]
    H.-J. Liang, Z.-Y. Gu, X.-Y. Zheng, W.-H. Li, L.-Y. Zhu, Z.-H. Sun, Y.-F. Meng, H.-Y. Yu, X.-K. Hou, and X.-L. Wu, J. Energy Chem. 59 (2021) 589-598.
    [36]
    N. Recham, G. Rousse, M.T. Sougrati, J.N. Chotard, C. Frayret, S. Mariyappan, B.C. Melot, J.C. Jumas, and J.M. Tarascon, Chem. Mater. 24 (2012) 4363-4370.
    [37]
    Z. Wang, W. Zhuo, J. Li, L. Ma, S. Tan, G. Zhang, H. Yin, W. Qin, H. Wang, L. Pan, et al., Nano Energy 98 (2022) 107243.
    [38]
    X. Liang, J. Xiao, W. Weng, and W. Xiao, Angew. Chem. Int. Ed. 60 (2021) 2120-2124.
    [39]
    J. Liao, X. Zhang, Q. Zhang, Q. Hu, Y. Li, Y. Du, J. Xu, L. Gu, and X. Zhou, Nano. Lett. 22 (2022) 4933-4940.
    [40]
    Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, W.-H. Li, X. Yang, H.-J. Liang, C.-D. Zhao, and X.-L. Wu, Sci. Bull. 65 (2020) 702-710.
    [41]
    S. Wu, B. Su, K. Ni, F. Pan, C. Wang, K. Zhang, D.Y.W. Yu, Y. Zhu, and W. Zhang, Adv. Energy Mater. 11 (2021) 2002737.
    [42]
    C. Ling, and F. Mizuno, J. Mater. Chem. A 1 (2013) 8000-8006.
    [43]
    Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai, K. Fu, S. Lacey, T. Li, J. Wan, X. Han, et al., Nano Energy 18 (2015) 205-211.
    [44]
    L. Fan, Y. Hu, A.M. Rao, J. Zhou, Z. Hou, C. Wang, and B. Lu, Small Methods 5 (2021) 2101131.
    [45]
    Z. Jian, Y. Liang, I.A. Rodriguez-Perez, Y. Yao, and X. Ji, Electrochem. Commun. 71 (2016) 5-8.
    [46]
    K. Sada, and P. Barpanda, Chem. Commun. 56 (2020) 2272-2275.
    [47]
    X. Wang, X. Xu, C. Niu, J. Meng, M. Huang, X. Liu, Z. Liu, and L. Mai, Nano Lett. 17 (2017) 544-550.
    [48]
    X. Wu, Z. Jian, Z. Li, and X. Ji, Electrochem. Commun. 77 (2017) 54-57.
    [49]
    L. Xue, Y. Li, H. Gao, W. Zhou, X. Lu, W. Kaveevivitchai, A. Manthiram, and J.B. Goodenough, J. Am. Chem. Soc. 139 (2017) 2164-2167.
    [50]
    Z. Xiao, J. Meng, F. Xia, J. Wu, F. Liu, X. Zhang, L. Xu, X. Lin, and L. Mai, Energy Environ. Sci. 13 (2020) 3129-3137.
    [51]
    H. Liu, D. Li, H. Liu, X. Wang, Y. Lu, C. Wang, and L. Guo, J. Colloid Interface Sci. 634 (2023) 864-873.
    [52]
    A. Rudola, D. Aurbach, and P. Balaya, Electrochem. Commun. 46 (2014) 56-59.
    [53]
    D. Aurbach, J. Power Sources 89 (2000) 206-218.
    [54]
    T. Deng, X. Fan, J. Chen, L. Chen, C. Luo, X. Zhou, J. Yang, S. Zheng, and C. Wang, Adv. Funct. Mater. 28 (2018) 1800219.
    [55]
    C. Vaalma, G.A. Giffin, D. Buchholz, and S. Passerini, J. Electrochem. Soc. 163 (2016) A1295-A1299.
    [56]
    L. Zhang, B. Zhang, C. Wang, Y. Dou, Q. Zhang, Y. Liu, H. Gao, M. Al-Mamun, W.K. Pang, Z. Guo, et al., Nano Energy 60 (2019) 432-439.
    [57]
    Y.-H. Zhu, Q. Zhang, X. Yang, E.-Y. Zhao, T. Sun, X.-B. Zhang, S. Wang, X.-Q. Yu, J.-M. Yan, and Q. Jiang, Chem 5 (2019) 168-179.
    [58]
    P. Hundekar, S. Basu, X. Fan, L. Li, A. Yoshimura, T. Gupta, V. Sarbada, A. Lakhnot, R. Jain, S. Narayanan, et al., Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 5588-5594.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return