Junzhu Yang, Chi-Kit Sou, Yuan Lu. Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO2-to-chemical conversion. Green Energy&Environment, 2024, 9(9): 1366-1383. doi: 10.1016/j.gee.2023.10.002
Citation: Junzhu Yang, Chi-Kit Sou, Yuan Lu. Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO2-to-chemical conversion. Green Energy&Environment, 2024, 9(9): 1366-1383. doi: 10.1016/j.gee.2023.10.002

Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO2-to-chemical conversion

doi: 10.1016/j.gee.2023.10.002
  • The increasing atmospheric carbon dioxide (CO2) concentration has exposed a series of crises in the earth's ecological environment. How to effectively fix and convert carbon dioxide into products with added value has attracted the attention of many researchers. Cell-free enzyme catalytic system coupled with electrical and light have been a promising attempt in the field of biological carbon fixation in recent years. In this review, the research progresses of photoenzyme catalysis, electroenzyme catalysis and photo-electroenzyme catalysis for converting carbon dioxide into chemical products in cell-free systems are systematically summarized. We focus on reviewing and comparing various coupling methods and principles of photoenzyme catalysis and electroenzyme catalysis in cell-free systems, especially the materials used in the construction of the coupling system, and analyze and point out the characteristics and possible problems of different coupling methods. Finally, we discuss the major challenges and prospects of coupling physical signals and cell-free enzymatic catalytic systems in the field of CO2 fixation, suggesting possible strategies to improve the carbon sequestration capacity of such systems.

     

  • [1]
    P. Friedlingstein, M. O'sullivan, M.W. Jones, R.M. Andrew, L. Gregor, J. Hauck, C. Le Quere, I.T. Luijkx, A. Olsen, G.P. Peters, W. Peters, J. Pongratz, C. Schwingshackl, S. Sitch, J.G. Canadell, P. Ciais, R.B. Jackson, S.R. Alin, R. Alkama, A. Arneth, V.K. Arora, N.R. Bates, M. Becker, N. Bellouin, H.C. Bittig, L. Bopp, F. Chevallier, L.P. Chini, M. Cronin, W. Evans, S. Falk, R.A. Feely, T. Gasser, M. Gehlen, T. Gkritzalis, L. Gloege, G. Grassi, N. Gruber, O. Gurses, I. Harris, M. Hefner, R.A. Houghton, G.C. Hurtt, Y. Iida, T. Ilyina, A.K. Jain, A. Jersild, K. Kadono, E. Kato, D. Kennedy, K. Klein Goldewijk, J. Knauer, J.I. Korsbakken, P. Landschutzer, N. Lefevre, K. Lindsay, J. Liu, Z. Liu, G. Marland, N. Mayot, M.J. Mcgrath, N. Metzl, N.M. Monacci, D.R. Munro, S.-I. Nakaoka, Y. Niwa, K. O'brien, T. Ono, P.I. Palmer, N. Pan, D. Pierrot, K. Pocock, B. Poulter, L. Resplandy, E. Robertson, C. Rodenbeck, C. Rodriguez, T.M. Rosan, J. Schwinger, R. Seferian, J.D. Shutler, I. Skjelvan, T. Steinhoff, Q. Sun, A.J. Sutton, C. Sweeney, S. Takao, T. Tanhua, P.P. Tans, X. Tian, H. Tian, B. Tilbrook, H. Tsujino, F. Tubiello, G.R. Van Der Werf, A.P. Walker, R. Wanninkhof, C. Whitehead, A. Willstrand Wranne, R. Wright, W. Yuan, C. Yue, X. Yue, S. Zaehle, J. Zeng, B. Zheng, Earth System Science Data 14(2022)4811-4900.
    [2]
    S. Venkata Mohan, J.A. Modestra, K. Amulya, S.K. Butti, G. Velvizhi, Trends Biotechnol 34(2016)506-519.
    [3]
    A. Elmekawy, H.M. Hegab, G. Mohanakrishna, A.F. Elbaz, M. Bulut, D. Pant, Bioresource Technology 215(2016)357-370.
    [4]
    M.B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E.H. Sargent, Nature Catalysis 2(2019)648-658.
    [5]
    P. Branduardi, M. Sauer, FEMS Microbiol Lett 365(2018).
    [6]
    T.S. Wong, Journal of Bioprocessing&Biotechniques 04(2014).
    [7]
    A.M. Henstra, J. Sipma, A. Rinzema, A.J. Stams, Curr Opin Biotechnol 18(2007)200-206.
    [8]
    J. Galmes, S. Capo-Bauca, U. Niinemets, C. Iniguez, Curr Opin Plant Biol 49(2019)60-67.
    [9]
    R.E. Sharwood, New Phytol 213(2017)494-510.
    [10]
    F.A. Busch, Plant J 101(2020)919-939.
    [11]
    W.L. Ogren, Annual Review of Plant Physiology and Plant Molecular Biology 35(1984)415-442.
    [12]
    X. Hou, Y. Li, Q. Zhong, X. Peng, Plant Physiology Journal 55(2019)255-264.
    [13]
    J. Feng, D. Ma, S.Y. Gao, Y. Liao, J. Feng, S. Xu, X. Wang, K.Q. Chen, Acs Sustainable Chemistry&Engineering 11(2023)9509-9522.
    [14]
    S.I. Tan, I.S. Ng, Green Chemistry 23(2021)4800-4813.
    [15]
    J.L. Zhang, G.X. Liu, A.I. Carvajal, R.H. Wilson, Z. Cai, Y. Li, Bioresources and Bioprocessing 8(2021).
    [16]
    A. Nisar, S. Khan, M. Hameed, A. Nisar, H. Ahmad, S.A. Mehmood, Microbiol Res 251(2021)126813.
    [17]
    K. De Kleijne, S.V. Hanssen, L. Van Dinteren, M.a.J. Huijbregts, R. Van Zelm, H. De Coninck, One Earth 5(2022)168-185.
    [18]
    K. Michael, A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, T. Aiken, International Journal of Greenhouse Gas Control 4(2010)659-667.
    [19]
    R. Cazelles, J. Drone, F. Fajula, O. Ersen, S. Moldovan, A. Galarneau, New Journal of Chemistry 37(2013).
    [20]
    R.K. Singh, R. Singh, D. Sivakumar, S. Kondaveeti, T. Kim, J. Li, B.H. Sung, B.-K. Cho, D.R. Kim, S.C. Kim, V.C. Kalia, Y.-H.P.J. Zhang, H. Zhao, Y.C. Kang, J.-K. Lee, ACS Catalysis 8(2018)11085-11093.
    [21]
    G. Liu, F. Gao, C. Gao, Y. Xiong, Chem Catalysis 1(2021)1367-1377.
    [22]
    S. Luo, P.P. Lin, L.-Y. Nieh, G.-B. Liao, P.-W. Tang, C. Chen, J.C. Liao, Nature Catalysis 5(2022)154-162.
    [23]
    D.K. Karig, S. Iyer, M.L. Simpson, M.J. Doktycz, Nucleic Acids Res 40(2012)3763-3774.
    [24]
    J. Yang, C. Wang, Y. Lu, ACS Synth Biol 11(2022)1408-1416.
    [25]
    A.D. Silverman, A.S. Karim, M.C. Jewett, Nat Rev Genet 21(2020)151-170.
    [26]
    X. Luo, Y. Guo, F. Ding, H. Zhao, G. Cui, H. Li, C. Wang, Angew Chem Int Ed Engl 53(2014)7053-7057.
    [27]
    B.J. Rasor, B. Vogeli, G.M. Landwehr, J.W. Bogart, A.S. Karim, M.C. Jewett, Current Opinion in Biotechnology 69(2021)136-144.
    [28]
    C.a.R. Cotton, N.J. Claassens, S. Benito-Vaquerizo, A. Bar-Even, Current Opinion in Biotechnology 62(2020)168-180.
    [29]
    M. Miller, W.E. Robinson, A.R. Oliveira, N. Heidary, N. Kornienko, J. Warnan, I.a.C. Pereira, E. Reisner, Angewandte Chemie International Edition 58(2019)4601-4605.
    [30]
    H. Hamby, B. Li, K.E. Shinopoulos, H.R. Keller, S.J. Elliott, G. Dukovic, Proceedings of the National Academy of Sciences 117(2020)135-140.
    [31]
    D.W. White, D. Esckilsen, S.K. Lee, S.W. Ragsdale, R.B. Dyer, J Phys Chem Lett 13(2022)5553-5556.
    [32]
    P.T. Fard, S.K. Albert, J. Ko, S. Lee, S.-J. Park, J. Kim, ACS Catalysis 12(2022)9698-9705.
    [33]
    X. Xing, Y. Liu, R.D. Lin, Y. Zhang, Z.L. Wu, X.Q. Yu, K. Li, N. Wang, ChemSusChem 16(2022) e2022019.
    [34]
    Z. Zhang, J. Tong, X. Meng, Y. Cai, S. Ma, F. Huo, J. Luo, B.-H. Xu, S. Zhang, M. Pinelo, ACS Sustainable Chemistry&Engineering 9(2021)11503-11511.
    [35]
    Y. Chen, P. Li, J. Zhou, C.T. Buru, L. Dordevic, P. Li, X. Zhang, M.M. Cetin, J.F. Stoddart, S.I. Stupp, M.R. Wasielewski, O.K. Farha, Journal of the American Chemical Society 142(2020)1768-1773.
    [36]
    Z. Zhao, D. Zheng, M. Guo, J. Yu, S. Zhang, Z. Zhang, Y. Chen, Angewandte Chemie 134(2022).
    [37]
    R.K. Yadav, J.-O. Baeg, G.H. Oh, N.-J. Park, K.-J. Kong, J. Kim, D.W. Hwang, S.K. Biswas, Journal of the American Chemical Society 134(2012)11455-11461.
    [38]
    R.K. Yadav, G.H. Oh, N.-J. Park, A. Kumar, K.-J. Kong, J.-O. Baeg, Journal of the American Chemical Society 136(2014)16728-16731.
    [39]
    R.K. Yadav, A. Kumar, N.-J. Park, D. Yadav, J.-O. Baeg, ChemCatChem 9(2017)3153-3159.
    [40]
    Y. Tan, J. Ma, F. Zhang, S. Wang, F. Lan, H. Liu, R. Li, ACS Sustainable Chemistry&Engineering 10(2022)12065-12071.
    [41]
    T.E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. Mclean, T. Chotel, P. Claus, N.S. Cortina, J.-C. Baret, T.J. Erb, Science 368(2020)649-654.
    [42]
    K. Nakata, A. Fujishima, Journal of Photochemistry and Photobiology C:Photochemistry Reviews 13(2012)169-189.
    [43]
    T.K. Z Pa Szti, O Hakkel and L Guczi, Journal of Physics:Condensed Matter 20224014(2008).
    [44]
    P.Y.-T. Chen, B. Li, C.L. Drennan, S.J. Elliott, Joule 3(2019)595-611.
    [45]
    K.A. Brown, M.B. Wilker, M. Boehm, G. Dukovic, P.W. King, Journal of the American Chemical Society 134(2012)5627-5636.
    [46]
    C.-H.W. Monica, L. K. Sanchez, Michael W. W. Adamsb and R. Brian Dyer, Chem. Commun 55(2019)5579.
    [47]
    H. Yuan, B. Cheng, J. Lei, L. Jiang, Z. Han, Nature Communications 12(2021).
    [48]
    J.A. Kim, S. Kim, J. Lee, J.-O. Baeg, J. Kim, Inorganic Chemistry 51(2012)8057-8063.
    [49]
    H.X. Liao, H.Y. Jia, J.R. Dai, M.H. Zong, N. Li, ChemSusChem 14(2021)1687-1691.
    [50]
    X. Ji, Y. Kang, Z. Su, P. Wang, G. Ma, S. Zhang, ACS Sustainable Chemistry&Engineering 6(2018)3060-3069.
    [51]
    J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Coordination Chemistry Reviews 322(2016)30-40.
    [52]
    X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.-C. Zhou, Chemical Society Reviews 46(2017)3386-3401.
    [53]
    F.L. Oliveira, A. De S. Franca, A.M. De Castro, R.O.M. Alves De Souza, P.M. Esteves, R.S.B. Goncalves, ChemPlusChem 85(2020)2051-2066.
    [54]
    C. Wang, K. Liao, ACS Applied Materials&Interfaces 13(2021)56752-56776.
    [55]
    H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, ACS Applied Materials&Interfaces 8(2016)24517-24524.
    [56]
    Y. Feng, L. Zhong, M. Bilal, Z. Tan, Y. Hou, S. Jia, J. Cui, Polymers 11(2018)27.
    [57]
    Y. Li, L. Wen, T. Tan, Y. Lv, Frontiers in Bioengineering and Biotechnology 7(2019).
    [58]
    R. Zhang, L. Wang, J. Han, J. Wu, C. Li, L. Ni, Y. Wang, Journal of Hazardous Materials 383(2020)121130.
    [59]
    S. Chen, L. Wen, F. Svec, T. Tan, Y. Lv, RSC Advances 7(2017)21205-21213.
    [60]
    S. Cao, J. Yu, Journal of Photochemistry and Photobiology C:Photochemistry Reviews 27(2016)72-99.
    [61]
    S. Yu, P. Lv, P. Xue, K. Wang, Q. Yang, J. Zhou, M. Wang, L. Wang, B. Chen, T. Tan, Chemical Engineering Journal 420(2021).
    [62]
    S. Alavala, R. Sangaraju, N. Nalban, B.D. Sahu, M.K. Jerald, E.K. Kilari, R. Sistla, European Journal of Pharmacology 855(2019)192-201.
    [63]
    T. Schwander, L. Schada Von Borzyskowski, S. Burgener, N.S. Cortina, T.J. Erb, Science 354(2016)900-904.
    [64]
    Y. Guo, X. Hong, Z. Chen, Y. Lv, Journal of Energy Chemistry 80(2023)140-162.
    [65]
    S.K. Kuk, K. Gopinath, R.K. Singh, T.-D. Kim, Y. Lee, W.S. Choi, J.-K. Lee, C.B. Park, ACS Catalysis 9(2019)5584-5589.
    [66]
    V.M. Badiani, C. Casadevall, M. Miller, S.J. Cobb, R.R. Manuel, I.a.C. Pereira, E. Reisner, Journal of the American Chemical Society 144(2022)14207-14216.
    [67]
    K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi, K. Kano, Electrochemistry Communications 73(2016)85-88.
    [68]
    E.-G. Choi, Y.J. Yeon, K. Min, Y.H. Kim, Journal of The Electrochemical Society 165(2018) H446-H448.
    [69]
    M. Yuan, S. Sahin, R. Cai, S. Abdellaoui, D.P. Hickey, S.D. Minteer, R.D. Milton, Angew Chem Int Ed Engl 57(2018)6582-6586.
    [70]
    J. Szczesny, A. Ruff, A.R. Oliveira, M. Pita, I.a.C. Pereira, A.L. De Lacey, W. Schuhmann, ACS Energy Letters 5(2020)321-327.
    [71]
    H. Song, C. Ma, P. Liu, C. You, J. Lin, Z. Zhu, Journal of CO2 Utilization 34(2019)568-575.
    [72]
    S. Srikanth, M. Maesen, X. Dominguez-Benetton, K. Vanbroekhoven, D. Pant, Bioresour Technol 165(2014)350-354.
    [73]
    S.-H. Kim, G.-Y. Chung, S.-H. Kim, G. Vinothkumar, S.-H. Yoon, K.-D. Jung, Electrochimica Acta 210(2016)837-845.
    [74]
    Y. Chen, P. Li, H. Noh, C.W. Kung, C.T. Buru, X. Wang, X. Zhang, O.K. Farha, Angew Chem Int Ed Engl 58(2019)7682-7686.
    [75]
    Z. Zhang, T. Vasiliu, F. Li, A. Laaksonen, X. Zhang, F. Mocci, X. Ji, Journal of CO2 Utilization 60(2022)101978.
    [76]
    H. Seelajaroen, A. Bakandritsos, M. Otyepka, R. Zboril, N.S. Sariciftci, ACS Appl Mater Interfaces 12(2020)250-259.
    [77]
    J. Jack, H. Fu, A. Leininger, T.K. Hyster, Z.J. Ren, ACS Sustainable Chemistry&Engineering 10(2022)4114-4121.
    [78]
    T. Cai, H.B. Sun, J. Qiao, L.L. Zhu, F. Zhang, J. Zhang, Z.J. Tang, X.L. Wei, J.G. Yang, Q.Q. Yuan, W.Y. Wang, X. Yang, H.Y. Chu, Q. Wang, C. You, H.W. Ma, Y.X. Sun, Y. Li, C. Li, H.F. Jiang, Q.H. Wang, Y.H. Ma, Science 373(2021)1523-+.
    [79]
    R. Barin, S. Rashid-Nadimi, D. Biria, M.A. Asadollahi, Electrochimica Acta 247(2017)1095-1102.
    [80]
    K. Xu, A. Chatzitakis, P.H. Backe, Q. Ruan, J. Tang, F. Rise, M. Bjoeras, T. Norby, Applied Catalysis B:Environmental 296(2021)120349.
    [81]
    S.K. Kuk, R.K. Singh, D.H. Nam, R. Singh, J.K. Lee, C.B. Park, Angew Chem Int Ed Engl 56(2017)3827-3832.
    [82]
    J. Zhang, D. Liu, Y. Liu, H. Chu, J. Bai, J. Cheng, H. Zhao, S. Fu, H. Liu, Y. Fu, Y. Ma, H. Jiang, Green Chemistry 25(2023)3247-3255.
    [83]
    E. Nurlaela, M. Harb, S. Del Gobbo, M. Vashishta, K. Takanabe, Journal of Solid State Chemistry 229(2015)219-227.
  • Cited by

    Periodical cited type(8)

    1. Awogbemi, O., Desai, D.A. Novel technologies for CO2 conversion to renewable fuels, chemicals, and value-added products. Discover Nano, 2025, 20(1): 29. doi:10.1186/s11671-025-04214-w
    2. Kumar, S., Patra, N., Hossain, I. et al. Exponential developments of quantum dots ecosystem for solar energy conversion and photocatalytic reactions: From photoanode design to renewable energy applications. Materials Research Bulletin, 2025, 184: 113223. doi:10.1016/j.materresbull.2024.113223
    3. Solaimany, F., Dashan, A., Pezeshk-Fallah, H. et al. 2D MXene nanosheets latest advances in electrochemical applications including energy storage and supercapacitors. Journal of Energy Storage, 2025, 111: 115341. doi:10.1016/j.est.2025.115341
    4. Cao, Y., Yang, P., Zhao, R. et al. Recent Progress in Enzyme Immobilization to Metal–Organic Frameworks to Enhance the CO2 Conversion Efficiency. Molecules, 2025, 30(2): 251. doi:10.3390/molecules30020251
    5. Krishnan, A., Archana, K., Arsha, A.S. et al. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production. Chinese Journal of Catalysis, 2025, 68: 103-154. doi:10.1016/S1872-2067(24)60156-7
    6. Deng, Y., Wang, J.-X., Ghosh, B. et al. Enzymatic CO2 reduction catalyzed by natural and artificial Metalloenzymes. Journal of Inorganic Biochemistry, 2024, 259: 112669. doi:10.1016/j.jinorgbio.2024.112669
    7. Qi, K., Liu, S.-Y., Zhang, Y. et al. CO2 electrolysis to formic acid for carbon neutralization. Green Energy and Environment, 2024, 9(9): 1333-1335. doi:10.1016/j.gee.2024.04.011
    8. Wang, C., Zhang, S., Hua, T. et al. CO2 geological storage: A bibliometric analysis of research trends. Heliyon, 2024, 10(14): e34479. doi:10.1016/j.heliyon.2024.e34479

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 44.5 %META: 44.5 %PDF: 33.5 %PDF: 33.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.7 %其他: 0.7 %China: 77.5 %China: 77.5 %France: 0.5 %France: 0.5 %India: 1.1 %India: 1.1 %Malaysia: 0.5 %Malaysia: 0.5 %Russian Federation: 0.5 %Russian Federation: 0.5 %United Kingdom: 1.1 %United Kingdom: 1.1 %United States: 18.1 %United States: 18.1 %其他ChinaFranceIndiaMalaysiaRussian FederationUnited KingdomUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (251) PDF downloads(182) Cited by(8)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return