Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Ming Yin, Jifeng Pang, Jin Guo, Xianquan Li, Yujia Zhao, Pengfei Wu, Mingyuan Zheng. Tailoring Ni based catalysts by indium for the dehydrogenative coupling of ethanol into ethyl acetate. Green Energy&Environment, 2024, 9(8): 1321-1331. doi: 10.1016/j.gee.2023.10.001
Citation: Ming Yin, Jifeng Pang, Jin Guo, Xianquan Li, Yujia Zhao, Pengfei Wu, Mingyuan Zheng. Tailoring Ni based catalysts by indium for the dehydrogenative coupling of ethanol into ethyl acetate. Green Energy&Environment, 2024, 9(8): 1321-1331. doi: 10.1016/j.gee.2023.10.001

Tailoring Ni based catalysts by indium for the dehydrogenative coupling of ethanol into ethyl acetate

doi: 10.1016/j.gee.2023.10.001
  • Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task. Herein, novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium (In) for this reaction. Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst, the ethyl acetate selectivity reached 90.1% at 46.2% ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h-1 in the 370 h time on stream. Moreover, the ethyl acetate productivity surpassed 1.1 gethyl acetate gcatalyst-1 h-1, one of the best performance in current works. According to catalyst characterizations and conditional experiments, the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys. The presence of In tailored the chemical properties of Ni, and subsequently inhibited the C–C cracking and/or condensation reactions during ethanol conversions. Over Ni4In alloy sites, ethanol was dehydrogenated into acetaldehyde, and then transformed into acetyl species with the removal of H atoms. Finally, the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved, affording a high ethyl acetate selectivity and catalyst stability.

     

  • loading
  • [1]
    M. Nielsen, H. Junge, A. Kammer, M. Beller, Angew. Chem. Int. Ed. 51 (2012) 5711-5713.
    [2]
    J. Sun, Y. Wang, ACS Catal. 4 (2014) 1078-1090.
    [3]
    R. Singha, J.K. Ray, Tetrahedron Lett. 57 (2016) 5395-5398.
    [4]
    B. Van Wettere, S. Aghakhani, J. Lauwaert, J.W. Thybaut, Appl. Catal., A 646 (2022) 118849.
    [5]
    L.T. Mika, E. Csefalvay, A. Nemeth, Chem. Rev. 118 (2018) 505-613.
    [6]
    J. Pang, M. Zheng, T. Zhang in: C. Song (Ed.) Adv. Catal., Academic Press2019, pp. 89-191.
    [7]
    S.M.A. Hakim Siddiki, T. Toyao, K.-i. Shimizu, Green Chem. 20 (2018) 2933-2952.
    [8]
    R. Ciriminna, M. Pagliaro, R. Luque, Green Energy Environ. 6 (2021) 161-166.
    [9]
    C. Gunanathan, L.J.W. Shimon, D. Milstein, J. Am. Chem. Soc. 131 (2009) 3146-3147.
    [10]
    M. Trincado, J. Bösken, H. Grützmacher, Coord. Chem. Rev. 443 (2021) 213967.
    [11]
    M. Onoda, K.-i. Fujita, ChemistrySelect 7 (2022) e202201135.
    [12]
    S.W. Colley, J. Tabatabaei, K.C. Waugh, M.A. Wood, J. Catal. 236 (2005) 21-33.
    [13]
    M. Zhang, G. Li, H. Jiang, J. Zhang, Catal. Lett. 141 (2011) 1104-1110.
    [14]
    S. Preedavijitkul, C. Autthanit, P. Praserthdam, B. Jongsomjit, J. Environ. Chem. Eng. 10 (2022) 107542.
    [15]
    E. Santacesaria, G. Carotenuto, R. Tesser, M. Di Serio, Chem. Eng. J. 179 (2012) 209-220.
    [16]
    C. Angelici, B.M. Weckhuysen, P.C.A. Bruijnincx, ChemSusChem 6 (2013) 1595-1614.
    [17]
    K. Inui, T. Kurabayashi, S. Sato, Appl. Catal., A 237 (2002) 53-61.
    [18]
    I. Ro, Y. Liu, M.R. Ball, D.H.K. Jackson, J.P. Chada, C. Sener, T.F. Kuech, R.J. Madon, G.W. Huber, J.A. Dumesic, ACS Catal. 6 (2016) 7040-7050.
    [19]
    H. Miura, K. Nakahara, T. Kitajima, T. Shishido, ACS Omega 2 (2017) 6167-6173.
    [20]
    D.D. Petrolini, W.H. Cassinelli, C.A. Pereira, E.A. Urquieta-Gonzalez, C.V. Santilli, L. Martins, RSC Adv. 9 (2019) 3294-3302.
    [21]
    T. Yamamoto, H. Mine, S. Katada, T. Tone, Appl. Catal. B 327 (2023) 122433.
    [22]
    Y. Zhang, Y. Wang, X. Guan, H. Li, X. Nie, Y. Liang, X. Bao, X. Li, F. Wang, J. Catal. 426 (2023) 86-95.
    [23]
    L.R. McCullough, E.S. Cheng, A.A. Gosavi, B.A. Kilos, D.G. Barton, E. Weitz, H.H. Kung, J.M. Notestein, J. Catal. 366 (2018) 159-166.
    [24]
    Y. Feng, S. Long, X. Tang, Y. Sun, R. Luque, X. Zeng, L. Lin, Chem. Soc. Rev. 50 (2021) 6042-6093.
    [25]
    J. Zhu, F. Cannizzaro, L. Liu, H. Zhang, N. Kosinov, I.A.W. Filot, J. Rabeah, A. Bruckner, E.J.M. Hensen, ACS Catal. 11 (2021) 11371-11384.
    [26]
    R. Xi, Y. Tang, R.L. Smith, X. Liu, L. Liu, X. Qi, Green Energy Environ. (2022) DOI: 10.1016/j.gee.2022.04.003.
    [27]
    C. Wang, M. Tian, Y. Han, T. Zong, N. Wang, L. Li, J. Lin, X. Wang, Appl. Catal. B 325 (2023) 122334.
    [28]
    Z. Wang, M. Yin, J. Pang, X. Li, Y. Xing, Y. Su, S. Liu, X. Liu, P. Wu, M. Zheng, T. Zhang, J. Energy Chem. 72 (2022) 306-317.
    [29]
    J. Pang, M. Zheng, L. He, L. Li, X. Pan, A. Wang, X. Wang, T. Zhang, J. Catal. 344 (2016) 184-193.
    [30]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
    [31]
    G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901-9904.
    [32]
    S. Lin, Q. Wang, M. Li, Z. Hao, Y. Pan, X. Han, X. Chang, S. Huang, Z. Li, X. Ma, ACS Catal. 12 (2022) 3346-3356.
    [33]
    L. Shen, W. Zhang, Y. Feng, J. Xu, M. Zhu, J. Mater. Chem. A 11 (2023) 8248-8255.
    [34]
    K. Inui, T. Kurabayashi, S. Sato, J. Catal. 212 (2002) 207-215.
    [35]
    T.K. Phung, Int. J. Hydrog. Energy 47 (2022) 42234-42249.
    [36]
    J. Pang, M. Yin, P. Wu, X. Li, H. Li, M. Zheng, T. Zhang, Green Chem. 23 (2021) 7902-7916.
    [37]
    L. He, Y. Huang, A. Wang, X. Wang, X. Chen, J.J. Delgado, T. Zhang, Angew. Chem. Int. Ed. 51 (2012) 6191-6194.
    [38]
    J. Guo, Z. Wang, J. Li, Z. Wang, ACS Catal. 12 (2022) 4026-4036.
    [39]
    S. Mondal, S. Dutta, S. Mal, S.K. Pati, S. Bhattacharyya, Angew. Chem. Int. Ed. 62 (2023) e202301269.
    [40]
    J. Liu, K. Wu, Z. Li, W. Li, Y. Ning, W. Wang, Y. Yang, Green Energy Environ. 7 (2022) 457-466.
    [41]
    C. Wang, T. Su, Z. Qin, H. Ji, Catal. Sci. Technol. 12 (2022) 4826-4836.
    [42]
    L.C. Pardo Pérez, Z. Chalkley, R. Wendt, I.Y. Ahmet, M. Wollgarten, M.T. Mayer, J. Mater. Chem. A 10 (2022) 20593-20605.
    [43]
    D. Bagchi, S. Sarkar, A.K. Singh, C.P. Vinod, S.C. Peter, ACS Nano 16 (2022) 6185-6196.
    [44]
    Z. Almisbaa, H.A. Aljama, K. Almajnouni, L. Cavallo, P. Sautet, ACS Catal. 13 (2023) 7358-7370.
    [45]
    J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang, M. Ding, Appl. Catal. B 243 (2019) 262-272.
    [46]
    J. Lu, Y. Lei, G. Wan, Z. Mei, J. Yu, Y. Zhao, S. He, Y. Luo, Appl. Catal. B 263 (2020) 118177.
    [47]
    K. Sang, J. Zuo, X. Zhang, Q. Wang, W. Chen, G. Qian, X. Duan, Green Energy Environ. 8 (2023) 619-625.
    [48]
    R. Wu, K. Sun, Y. Chen, M. Zhang, L. Wang, Surf. Sci. 703 (2021) 121742.
    [49]
    M. Schmal, D.V. Cesar, M.M.V.M. Souza, C.E. Guarido, Can. J. Chem. Eng. 89 (2011) 1166-1175.
    [50]
    C.P. Rodrigues, P.C. Zonetti, C.G. Silva, A.B. Gaspar, L.G. Appel, Appl. Catal., A 458 (2013) 111-118.
    [51]
    A. Kumar, A. Ashok, R.R. Bhosale, M.A.H. Saleh, F.A. Almomani, M. Al-Marri, M.M. Khader, F. Tarlochan, Catal. Lett. 146 (2016) 778-787.
    [52]
    T. Yan, W. Dai, G. Wu, S. Lang, M. Hunger, N. Guan, L. Li, ACS Catal. 8 (2018) 2760-2773.
    [53]
    S.M. de Lima, A.M. da Silva, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, Appl. Catal. B 96 (2010) 387-398.
    [54]
    H.-N. Chiang, C.-C. Wang, Y.-C. Cheng, J.-C. Jiang, H.-M. Hsieh, Langmuir 26 (2010) 15845-15851.
    [55]
    Y. Chen, Z. Zhai, J. Liu, J. Zhang, Z. Geng, H. Lyu, Phys. Chem. Chem. Phys. 22 (2020) 7564-7576.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return