Volume 9 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Xiang-Bin Shao, Zhi-Wei Xing, Si-Yu Liu, Ke-Xin Miao, Shi-Chao Qi, Song-Song Peng, Xiao-Qin Liu, Lin-Bing Sun. Atomically dispersed calcium as solid strong base catalyst with high activity and stability. Green Energy&Environment, 2024, 9(10): 1619-1626. doi: 10.1016/j.gee.2023.08.003
Citation: Xiang-Bin Shao, Zhi-Wei Xing, Si-Yu Liu, Ke-Xin Miao, Shi-Chao Qi, Song-Song Peng, Xiao-Qin Liu, Lin-Bing Sun. Atomically dispersed calcium as solid strong base catalyst with high activity and stability. Green Energy&Environment, 2024, 9(10): 1619-1626. doi: 10.1016/j.gee.2023.08.003

Atomically dispersed calcium as solid strong base catalyst with high activity and stability

doi: 10.1016/j.gee.2023.08.003
  • Solid strong base catalysts are highly attractive for diverse reactions owing to their advantages of neglectable corrosion, facile separation, and environmental friendliness. However, their widespread applications are impeded by basic components aggregation and low stability. In this work, we fabricate single calcium atoms on graphene (denoted as Ca1/G) by use of a redox strategy for the first time, producing solid strong base catalyst with high activity and stability. The precursor Ca(NO3)2 is first reduced to CaO at 400 ℃ by the support graphene, forming CaO/G with conventional basic sites, and the subsequent reduction at 850 ℃ results in the generation of Ca1/G with atomically dispersed Ca. Various characterizations reveal that Ca single atoms are anchored on graphene in tetra-coordination (Ca-C2-N2) where N is in situ doped from Ca(NO3)2. The atomically dispersed Ca, along with their anchoring on the support, endow Ca1/G with high activity and stability toward the transesterification reaction of ethylene carbonate with methanol. The turnover frequency value reaches 128.0 h-1 on Ca1/G, which is much higher than the traditional counterpart CaO/G and various reported solid strong bases (2.9-46.2 h-1). Moreover, the activity of Ca1/G is well maintained during 5 cycles, while 60% of activity is lost for the conventional analogue CaO/G due to the leaching of Ca.

     

  • loading
  • [1]
    L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Chem. Rev. 117 (2017) 8129-8176.
    [2]
    L.B. Sun, X.Q. Liu, H.C. Zhou, Chem. Soc. Rev. 44 (2015) 5092-5147.
    [3]
    A.C. Carpentier, D.P. Blondin, F. Haman, D. Richard, Nature 609 (2022) 253-254.
    [4]
    S.S. Peng, X.B. Shao, M.X. Gu, G.S. Zhang, C. Gu, Y. Nian, Y. Jia, Y. Han, X.Q. Liu, L.B. Sun, Angew. Chem. Int. Ed. 61 (2022) e202215157.
    [5]
    W. Bing, L. Zheng, S. He, D. Rao, M. Xu, L. Zheng, B. Wang, Y. Wang, M. Wei, ACS Catal. 8 (2018) 656-664.
    [6]
    X.Y. Liu, L.B. Sun, F. Lu, T.T. Li, X.Q. Liu, J. Mater. Chem. A 1 (2013) 1623-1631.
    [7]
    K. Sugino, N. Oya, N. Yoshie, M. Ogura, J. Am. Chem. Soc. 133 (2011) 20030-20032.
    [8]
    S.S. Chen, I.K.M. Yu, D.-W. Cho, H. Song, D.C.W. Tsang, J.-P. Tessonnier, Y.S. Ok, C.S. Poon, ACS Sustain. Chem. Eng. 6 (2018) 16113-16120.
    [9]
    S.S. Peng, G.S. Zhang, X.B. Shao, C. Gu, X.Q. Liu, L.B. Sun, ACS Appl. Mater. Interfaces 14 (2022) 8058-8065.
    [10]
    S.S. Peng, X.B. Shao, Y.-X. Li, Y. Jiang, C. Gu, M.K. Dinker, X.Q. Liu, L.B. Sun, Nano Res. 15 (2021) 2905-2912.
    [11]
    L. Zhu, F. Lu, X.D. Liu, X.Q. Liu, L.B. Sun, Chem. Commun. 51 (2015) 10058-10061.
    [12]
    Y.H. Sun, L.B. Sun, T.T. Li, X.Q. Liu, J. Phys. Chem. C 114 (2010) 18988-18995.
    [13]
    T.T. Li, L.B. Sun, X.Y. Liu, Y.H. Sun, X.L. Song, X.Q. Liu, Chem. Commun. 48 (2012) 6423-6425.
    [14]
    C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu, D. He, D. Xi, Q. Zhang, T. Yuan, Y. Qu, J. Yang, F. Zhou, Z. Yang, X. Wang, J. Wang, J. Luo, Y. Li, H. Duan, Y. Wu, Y. Li, Joule 3 (2019) 584-594.
    [15]
    J. Wang, Z. Li, Y. Wu, Y. Li, Adv. Mater. 30 (2018) e1801649.
    [16]
    J. Xi, H.S. Jung, Y. Xu, F. Xiao, J.W. Bae, S. Wang, Adv. Funct. Mater. 31 (2021) 2008318.
    [17]
    X.B. Shao, Y. Nian, S.S. Peng, G.S. Zhang, M.X. Gu, Y. Han, X.Q. Liu, L.B. Sun, Sci. China-Chem. 66 (2023) 1737-1743.
    [18]
    R. Li, D. Wang, Nano Res. 15 (2022) 6888-6923.
    [19]
    J. Liang, Z. Liang, R. Zou, Y. Zhao, Adv. Mater. 29 (2017) 1701139.
    [20]
    H. Yang, L. Shang, Q. Zhang, R. Shi, G.I.N. Waterhouse, L. Gu, T. Zhang, Nat. Commun. 10 (2019) 4585.
    [21]
    H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim, E.L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M.J. Yacaman, P.M. Ajayan, D. Chen, J.M. Tour, Nat. Commun. 6 (2015) 8668.
    [22]
    K. Sun, H. Shan, H. Neumann, G.P. Lu, M. Beller, Nat. Commun. 13 (2022) 1848.
    [23]
    L. Wang, W. Zhang, S. Wang, Z. Gao, Z. Luo, X. Wang, R. Zeng, A. Li, H. Li, M. Wang, X. Zheng, J. Zhu, W. Zhang, C. Ma, R. Si, J. Zeng, Nat. Commun. 7 (2016) 14036.
    [24]
    X. Zheng, P. Li, S. Dou, W. Sun, H. Pan, D. Wang, Y. Li, Energy Environ. Sci. 14 (2021) 2809-2858.
    [25]
    Y. Cao, W. Peng, Y. Li, F. Zhang, Y. Zhu, X. Fan, Green Energy Environ. 8 (2023) 360-382.
    [26]
    Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang, Y. Lin, T. Yuan, F. Zhou, Y. Hu, Z. Yang, C. Zhao, J. Wang, C. Zhao, Y. Hu, G. Wu, Q. Zhang, Q. Xu, B. Liu, P. Gao, R. You, W. Huang, L. Zheng, L. Gu, Y. Wu, Y. Li, J. Am. Chem. Soc. 141 (2019) 4505-4509.
    [27]
    Q. Zhou, J. Cai, Z. Zhang, R. Gao, B. Chen, G. Wen, L. Zhao, Y. Deng, H. Dou, X. Gong, Y. Zhang, Y. Hu, A. Yu, X. Sui, Z. Wang, Z. Chen, Small Methods 5 (2021) e2100024.
    [28]
    S. Liu, Z. Li, C. Wang, W. Tao, M. Huang, M. Zuo, Y. Yang, K. Yang, L. Zhang, S. Chen, P. Xu, Q. Chen, Nat. Commun. 11 (2020) 1-11.
    [29]
    E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong, T. Zhao, Z. Jin, J. Ge, Z. Jiang, C. Liu, W. Xing, Angew. Chem. Int. Ed. 58 (2019) 12469-12475.
    [30]
    Y. Xiong, H. Li, C. Liu, L. Zheng, C. Liu, J.O. Wang, S. Liu, Y. Han, L. Gu, J. Qian, D. Wang, Adv. Mater. 34 (2022) e2110653.
    [31]
    R. Boppella, M. Austeria P, Y. Kim, E. Kim, I. Song, Y. Eom, D.P. Kumar, M. Balamurugan, E. Sim, D.H. Kim, T.K. Kim, Adv. Funct. Mater. 32 (2022) 2202351.
    [32]
    W. Bing, L. Zheng, S. He, D. Rao, M. Xu, L. Zheng, B. Wang, Y. Wang, M. Wei, ACS Catal. 8 (2017) 656-664.
    [33]
    S. Ji, Y. Chen, S. Zhao, W. Chen, L. Shi, Y. Wang, J. Dong, Z. Li, F. Li, C. Chen, Q. Peng, J. Li, D. Wang, Y. Li, Angew. Chem. Int. Ed. 58 (2019) 4271-4275.
    [34]
    W. Ni, Y. Gao, Y. Lin, C. Ma, X. Guo, S. Wang, S. Zhang, ACS Catal. 11 (2021) 5212-5221.
    [35]
    H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Nat. Commun. 11 (2020) 3049.
    [36]
    X.Y. Liu, L.B. Sun, X.D. Liu, A.G. Li, F. Lu, X.Q. Liu, ACS Appl. Mater. Interfaces 5 (2013) 9823-9829.
    [37]
    Y. Pei, Y. Quan, X. Wang, J. Zhao, R. Shi, Z. Li, J. Ren, Appl. Catal. B-Environ. 300 (2022) 120718.
    [38]
    A. Bansode, A. Urakawa, ACS Catal. 4 (2014) 3877-3880.
    [39]
    W. Ru, Y. Liu, B. Fu, F. Fu, J. Feng, D. Li, Small 18 (2021) 2103852.
    [40]
    K. Zhu, S. Liang, X. Cui, R. Huang, N. Wan, L. Hua, H. Li, H. Chen, Z. Zhao, G. Hou, M. Li, Q. Jiang, L. Yu, D. Deng, Nano Energy 82 (2021) 105718.
    [41]
    L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 4 (2012) 418-423.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return