Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Gengyi Zhang, Haiqing Lin. Indispensable gutter layers in thin-film composite membranes for carbon capture. Green Energy&Environment, 2024, 9(8): 1220-1238. doi: 10.1016/j.gee.2023.08.001
Citation: Gengyi Zhang, Haiqing Lin. Indispensable gutter layers in thin-film composite membranes for carbon capture. Green Energy&Environment, 2024, 9(8): 1220-1238. doi: 10.1016/j.gee.2023.08.001

Indispensable gutter layers in thin-film composite membranes for carbon capture

doi: 10.1016/j.gee.2023.08.001
  • Industrial thin-film composite (TFC) membranes achieve superior gas separation properties from high-performance selective layer materials, while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing. However, the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity, while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers. This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance. We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results. Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed, and the strategies to improve their compatibility with the selective layer are highlighted, such as oxygen plasma treatment, polydopamine deposition, and surface grafting. Finally, we present the opportunities of the gutter layer design for practical applications.

     

  • loading
  • [1]
    M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, Macromolecules 50 (2017) 7809-7843.
    [2]
    M. Sandru, E.M. Sandru, W.F. Ingram, J. Deng, P.M. Stenstad, L. Deng, R.J. Spontak, Science 376 (2022) 90-94.
    [3]
    Z. Qiao, S. Zhao, M. Sheng, J. Wang, S. Wang, Z. Wang, C. Zhong, M.D. Guiver, Nat. Mater. 18 (2019) 163-168.
    [4]
    J. Liu, S. Zhang, D. Jiang, C.M. Doherty, A.J. Hill, C. Cheng, H. Park, H. Lin, Joule 3 (2019) 1881-1894.
    [5]
    G. Zhang, T.N. Tran, L. Huang, E. Deng, A. Blevins, W. Guo, Y. Ding, H. Lin, J. Membr. Sci. 644 (2022) 120184.
    [6]
    W. Sun, M. Yin, W. Zhang, S. Li, N. Wang, Q. An, Green Energy Environ. 8 (2023) 1389–1397.
    [7]
    K. Xie, Q. Fu, G.G. Qiao, P.A. Webley, J. Membr. Sci. 572 (2019) 38-60.
    [8]
    L. Zhu, L. Huang, S.R. Venna, A.K. Blevins, Y. Ding, D.P. Hopkinson, M.T. Swihart, H. Lin, ACS Nano 15 (2021) 12119-12128.
    [9]
    L. Zhu, D. Yin, Y. Qin, S. Konda, S. Zhang, A. Zhu, S. Liu, T. Xu, M.T. Swihart, H. Lin, Adv. Funct. Mater. 29 (2019) 1904357.
    [10]
    C. Zhang, W.J. Koros, Adv. Mater. 29 (2017) 1701631.
    [11]
    H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammad, J. Kniep, T.C. Merkel, T. Wu, R.C. Lambrecht, J. Membr. Sci. 457 (2014) 149-161.
    [12]
    M. Fathizadeh, K. Khivantsev, T.J. Pyrzynski, N.B. Klinghoffer, A. Shakouri, M. Yu, S. Li, Chem. Comm. 54 (2018) 9454-9457.
    [13]
    H. Lin, M. Zhou, J. Ly, J. Vu, J.G. Wijmans, T.C. Merkel, J. Jin, A. Haldeman, E.H. Wagener, D. Rue, Ind. Eng. Chem. Res. 52 (2013) 10820-10834.
    [14]
    Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 1 (2016) 102-128.
    [15]
    M. Kattula, K. Ponnuru, L. Zhu, W. Jia, H. Lin, E.P. Furlani, Sci. Rep. 5 (2015) 15016.
    [16]
    C. Liang, T.-S. Chung, J.-Y. Lai, Prog. Polym. Sci. 97 (2019) 101141.
    [17]
    L. Zhu, M. Yavari, W. Jia, E.P. Furlani, H. Lin, Ind. Eng. Chem. Res. 56 (2017) 351-358.
    [18]
    J.G. Wijmans, P. Hao, J. Memb. Sci. 494 (2015) 78-85.
    [19]
    P. Hao, J.G. Wijmans, Z. He, L.S. White, J. Membr. Sci. 594 (2020).
    [20]
    A. Ghadimi, S. Norouzbahari, H. Lin, H. Rabiee, B. Sadatnia, J. Membr. Sci. 563 (2018) 643-654.
    [21]
    L. Zhu, W. Jia, M. Kattula, K. Ponnuru, E.P. Furlani, H. Lin, J. Membr. Sci. 514 (2016) 684-695.
    [22]
    K.A. Lundy, I. Cabasso, Ind. Eng. Chem. Res. 28 (1989) 742-756.
    [23]
    G. Zhang, V.T. Bui, Y. Yin, E.H.R. Tsai, C.-Y. Nam, H. Lin, ACS Appl. Mater. Interfaces 15 (2023) 35543-35551.
    [24]
    F. Wang, Z. Yang, C.Y. Tang, ACS EST Eng. 2 (2022) 2023-2033.
    [25]
    G.Z. Ramon, M.C.Y. Wong, E.M.V. Hoek, J. Membr. Sci. 415-416 (2012) 298-305.
    [26]
    T. Xie, F. Li, K. Chen, S. Zhao, Y. Chen, H. Sun, P. Li, Q.J. Niu, Desalination 554 (2023) 116509.
    [27]
    L. Peng, Z. Yang, L. Long, S. Zhou, H. Guo, C.Y. Tang, J. Membr. Sci. 641 (2022) 119871.
    [28]
    Z. Qin, Y. Ma, J. Wei, H. Guo, B. Wang, J. Deng, C. Yi, N. Li, S. Yi, Y. Deng, W. Du, J. Shen, W. Jiang, L. Yao, L. Yang, Z. Dai, Green Energy Environ. (2023) in press.
    [29]
    H. Yin, M. Xu, Z. Luo, X. Bi, J. Li, S. Zhang, X. Wang, Green Energy Environ. (2022) in press.
    [30]
    Y. Han, W.S. Ho, J. Membr. Sci. 628 (2021) 119244.
    [31]
    G. Zhao, W. Han, L. Dong, H. Fan, Z. Qu, J. Gu, H. Meng, Green Energy Environ. 7 (2022) 1143-1160.
    [32]
    S. Dong, Z. Wang, M. Sheng, Z. Qiao, J. Wang, Sep. Purif. Technol. 239 (2020) 116580.
    [33]
    J. Zhao, G. He, G. Liu, F. Pan, H. Wu, W. Jin, Z. Jiang, Prog. Polym. Sci. 80 (2018) 125-152.
    [34]
    S. Dong, Z. Wang, M. Sheng, Z. Qiao, J. Wang, J. Membr. Sci. 610 (2020) 118221.
    [35]
    A.M. Tandel, N. Rawda, E. Deng, H. Lin, J. Membr. Sci. 663 (2022) 121015.
    [36]
    W. Yave, H. Huth, A. Car, C. Schick, Energy Environ. Sci. 4 (2011) 4656-4661.
    [37]
    L. Wang, Y. Li, S. Li, P. Ji, C. Jiang, J. Engergy Chem. 23 (2014) 717-725.
    [38]
    W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, Macromolecules 43 (2010) 326-333.
    [39]
    Y. Chen, B. Wang, L. Zhao, P. Dutta, W.W. Ho, J. Membr. Sci. 495 (2015) 415-423.
    [40]
    Y. Chen, L. Zhao, B. Wang, P. Dutta, W.W. Ho, J. Membr. Sci. 497 (2016) 21-28.
    [41]
    J. Peter, K.-V. Peinemann, J. Membr. Sci. 340 (2009) 62-72.
    [42]
    M. Yavari, T. Le, H. Lin, J. Membr. Sci. 525 (2017) 387-398.
    [43]
    I. Pinnau, L.G. Toy, J. Membr. Sci. 109 (1996) 125-133.
    [44]
    Y. Hu, M. Shiotsuki, F. Sanda, B.D. Freeman, T. Masuda, Macromolecules 41 (2008) 8525-8532.
    [45]
    S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 43 (2014) 6116-6140.
    [46]
    K. Ramasubramanian, M.A. Severance, P.K. Dutta, W.W. Ho, J. Colloid Interface Sci. 452 (2015) 203-214.
    [47]
    R. Krishna, J.M. Van Baten, J. Membr. Sci. 360 (2010) 323-333.
    [48]
    Q. Fu, J. Kim, P.A. Gurr, J.M. Scofield, S.E. Kentish, G.G. Qiao, Energy Environ. Sci. 9 (2016) 434-440.
    [49]
    Y. Ying, S.B. Peh, H. Yang, Z. Yang, D. Zhao, Adv. Mater. 34 (2022) 2104946.
    [50]
    Y. Ying, Z. Yang, D. Shi, S. Peh, Y. Wang, X. Yu, H. Yang, K. Chai, D. Zhao, J. Membr. Sci. 632 (2021) 119384.
    [51]
    K. Xie, Q. Fu, C. Xu, H. Lu, Q. Zhao, R. Curtain, D. Gu, P.A. Webley, G.G. Qiao, Energy Environ. Sci. 11 (2018) 544-550.
    [52]
    W. Yave, A. Car, J. Wind, K. Peinemann, Nanotechnology 21 (2010) 1-7.
    [53]
    Y. Wu, D. Zhao, J. Ren, Y. Qiu, M. Deng, Sep. Purif. Technol. 215 (2019) 480-489.
    [54]
    O. Selyanchyn, R. Selyanchyn, S. Fujikawa, ACS Appl. Mater. Interfaces 12 (2020) 33196-33209.
    [55]
    X. Jiang, C. Chuah, K. Goh, R. Wang, J. Membr. Sci. 638 (2021) 119708.
    [56]
    Q. Fu, A. Halim, J. Kim, J.M. Scofield, P.A. Gurr, S.E. Kentish, G.G. Qiao, J. Mater. Chem. A 1 (2013) 13769-13778.
    [57]
    J.M.P. Scofield, P.A. Gurr, J. Kim, Q. Fu, S.E. Kentish, G.G. Qiao, Ind. Eng. Chem. Res. 55 (2016) 8364-8372.
    [58]
    M. Liu, K. Xie, M.D. Nothling, L. Zu, S. Zhao, D.J. Harvie, Q. Fu, P.A. Webley, G.G. Qiao, ACS Cent. Sci. 7 (2021) 671-680.
    [59]
    M. Liu, M.D. Nothling, P.A. Webley, J. Jin, Q. Fu, G.G. Qiao, Chem. Eng. J. 396 (2020) 125328.
    [60]
    L. Xiang, Y. Pan, J. Jiang, Y. Chen, J. Chen, L. Zhang, C. Wang, Chem. Eng. Sci. 160 (2017) 236-244.
    [61]
    D. Wu, Y. Han, L. Zhao, W. Salim, V. Vakharia, W.W. Ho, J. Membr. Sci. 562 (2018) 56-66.
    [62]
    P.D. Sutrisna, J. Hou, H. Li, Y. Zhang, V. Chen, J. Membr. Sci. 524 (2017) 266-279.
    [63]
    M. Yoo, K. Kim, J. Lee, T. Kim, C. Chung, Y. Cho, H. Park, J. Membr. Sci. 566 (2018) 336-345.
    [64]
    M. Liu, K. Xie, M.D. Nothling, P.A. Gurr, S.S.L. Tan, Q. Fu, P.A. Webley, G.G. Qiao, ACS Nano 12 (2018) 11591-11599.
    [65]
    Y. Ji, M. Zhang, K. Guan, G. Liu, W. Jin, J. Zhao, Adv. Funct. Mater. 29 (2019) 1900735.
    [66]
    T. Merkel, V. Bondar, K. Nagai, B. Freeman, I. Pinnau, J. Polym. Sci. Part B: Polym. Phys. 38 (2000) 415-434.
    [67]
    B.W. Rowe, B.D. Freeman, D.R. Paul, Polymer 50 (2009) 5565-5575.
    [68]
    P. Li, H. Chen, T.-S. Chung, J. Membr. Sci. 434 (2013) 18-25.
    [69]
    H. Han, J.M.P. Scofield, P.A. Gurr, P.A. Webley, G.G. Qiao, Chem. Eng. J. 462 (2023) 142087.
    [70]
    K. Chen, Y. Han, Z. Zhang, W.S.W. Ho, J. Membr. Sci. 628 (2021) 119215.
    [71]
    Y. Wang, L. Li, X. Zhang, J. Li, J. Wang, N. Li, J. Membr. Sci. 599 (2020) 117828.
    [72]
    Z. Tong, W.W. Ho, J. Membr. Sci. 543 (2017) 202-211.
    [73]
    I.I. Rose, H. Roth, J. Xie, F. Hollmann, S. Votteler, M. Storr, B. Krause, M. Wessling, J. Membr. Sci. 648 (2022) 120324.
    [74]
    P. Li, Z. Wang, W. Li, Y. Liu, J. Wang, S. Wang, ACS Appl. Mater. Interfaces 7 (2015) 15481-15493.
    [75]
    H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426-430.
    [76]
    Y. Zhang, B. Thingholm, K.N. Goldie, R. Ogaki, B. Stadler, Langmuir 28 (2012) 17585-17592.
    [77]
    W.-Z. Qiu, H. Yang, Z. Xu, Adv. Colloid Interface Sci. 256 (2018) 111-125.
    [78]
    D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Sens. Actuators B Chem. 114 (2006) 170-172.
    [79]
    X. Jiang, K. Goh, R. Wang, J. Membr. Sci. 658 (2022).
    [80]
    J. Liu, Y. Pan, J. Xu, Z. Wang, H. Zhu, G. Liu, J. Zhong, W. Jin, J. Memb. Sci. 667 (2023) 121183.
    [81]
    L. Hu, J. Cheng, Y. Li, J. Liu, J. Zhou, K. Cen, J. Colloid Interface Sci. 510 (2018) 12-19.
    [82]
    J. Zhou, A.V. Ellis, N.H. Voelcker, Electrophoresis 31 (2010) 2-16.
    [83]
    S. Hemmila, J.V. Cauich-Rodriguez, J. Kreutzer, P. Kallio, Appl. Surf. Sci. 258 (2012) 9864-9875.
    [84]
    T. Masuda, E. Isobe, T. Higashimura, K. Takada, J. Am. Chem. Soc. 105 (1983) 7473-7474.
    [85]
    V. Shantarovich, Z. Azamatova, Y.A. Novikov, Y.P. Yampolskii, Macromolecules 31 (1998) 3963-3966.
    [86]
    I. Pinnau, L. Toy, J. Membr. Sci. 116 (1996) 199-209.
    [87]
    S.D. Bazhenov, I.L. Borisov, D.S. Bakhtin, A.N. Rybakova, V.S. Khotimskiy, S.P. Molchanov, V.V. Volkov, Green Energy Environ. 1 (2016) 235-245.
    [88]
    Q. Chen, J. Electrost. 59 (2003) 3-13.
    [89]
    R.R. Tiwari, Z.P. Smith, H. Lin, B.D. Freeman, D.R. Paul, Polymer 55 (2014) 5788-5800.
    [90]
    M. Yavari, S. Maruf, Y. Ding, H. Lin, J. Membr. Sci. 525 (2017) 399-408.
    [91]
    H. Lin, Curr. Opin. Chem. Eng. 4 (2014) 54-61.
    [92]
    K. Geng, T. He, R. Liu, S. Dalapati, K. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 120 (2020) 8814-8933.
    [93]
    Z. Gu, X. Yan, Angew. Chem. Int. Ed. 49 (2010) 1477-1480.
    [94]
    A.J. Brown, N.A. Brunelli, K. Eum, F. Rashidi, J. Johnson, W.J. Koros, C.W. Jones, S. Nair, Science 345 (2014) 72-75.
    [95]
    B. Wang, C. Sun, Y. Li, L. Zhao, W.S.W. Ho, P.K. Dutta, Microporous Mesoporous Mater. 208 (2015) 72-82.
    [96]
    L. Zhao, Y. Chen, B. Wang, C. Sun, S. Chakraborty, K. Ramasubramanian, P.K. Dutta, W.W. Ho, J. Membr. Sci. 498 (2016) 1-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return