Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Tianhao Li, Weihua Hu. Ionic liquid derived electrocatalysts for electrochemical water splitting. Green Energy&Environment, 2024, 9(4): 604-622. doi: 10.1016/j.gee.2023.06.004
Citation: Tianhao Li, Weihua Hu. Ionic liquid derived electrocatalysts for electrochemical water splitting. Green Energy&Environment, 2024, 9(4): 604-622. doi: 10.1016/j.gee.2023.06.004

Ionic liquid derived electrocatalysts for electrochemical water splitting

doi: 10.1016/j.gee.2023.06.004
  • Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy, which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction (HER and OER). Ionic liquids (ILs) or poly (ionic liquids) (PILs), containing heteroatoms, metal-based anions, and various structures, have been frequently involved as precursors to prepare electrocatalysts for water splitting. Moreover, ILs/PILs possess high conductivity, wide electrochemical windows, and high thermal and chemical stability, which can be directly applied in the electrocatalysis process with high durability. In this review, we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER, where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts. Due to those attractive properties, IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting. All these accomplishments and developments are systematically summarized and thoughtfully discussed. Then, the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.

     

  • loading
  • [1]
    S. Sanati, A. Morsali, H. Garcia, Energy Environ. Sci. 15 (2022) 3119-3151.
    [2]
    T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520-7535.
    [3]
    Y. Hu, Z. Li, Z. Wang, X. Wang, W. Chen, J. Wang, W. Zhong, R. Ma, Adv. Sci. 10 (2023) 2206995.
    [4]
    Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 51 (2022) 9620-9693.
    [5]
    T. Terlouw, C. Bauer, R. Mckenna, M. Mazzotti, Energy Environ. Sci. 15 (2022) 3583-3602.
    [6]
    T. Li, T. Hu, L. Dai, C.M. Li, J. Mater. Chem. A 8 (2020) 23674-23698.
    [7]
    M.Z. Rahman, M.G. Kibria, C.B. Mullins, Chem. Soc. Rev. 49 (2020) 1887-1931.
    [8]
    M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure, P. Millet, R.D. Braatz, M.Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schafer, Chem. Soc. Rev. 51 (2022) 4583-4762.
    [9]
    W. Li, H. Tian, L. Ma, Y. Wang, X. Liu, X. Gao, Adv. Mater. 3 (2022) 5598-5644.
    [10]
    W. Yang, Z. Wang, W. Zhang, S. Guo, Trends Chem. 1 (2019) 259-271.
    [11]
    X. Zheng, P. Li, S. Dou, W. Sun, H. Pan, D. Wang, Y. Li, Energy & Environmental Science 14 (2021) 2809-2858.
    [12]
    J.-B. Tan, G.-R. Li, J. Mater. Chem. A 8 (2020) 14326-14355.
    [13]
    X. Wang, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Adv. Mater. 31 (2019) 1803625.
    [14]
    W.X. Yang, W.Y. Zhang, R. Liu, F. Lv, Y.G. Chao, Z.C. Wang, S.J. Guo, Chinese J. Catal. 43 (2022) 110-115.
    [15]
    X. Liu, R. Liu, J. Wang, Y. Liu, L. Li, W. Yang, X. Feng, B. Wang, Nano Res. 15 (2022) 8857-8864.
    [16]
    Y. Huang, Z. Hu, L.A. Huang, Z. Wang, Z. Lin, S. Shen, W. Zhong, J. Pan, Nanoscale 15 (2023) 3550-3559.
    [17]
    X. Wang, J. Zhang, Z. Wang, Z. Lin, S. Shen, W. Zhong, Chinese J. Struc. Chem. (2023) 10.1016/j.cjsc.2023.100035.
    [18]
    Z. Wang, Z. Lin, Y. Wang, S. Shen, Q. Zhang, J. Wang, W. Zhong, Adv. Mater. (2023) e2302007.
    [19]
    P. Li, G. Zhao, P. Cui, N. Cheng, M. Lao, X. Xu, S.X. Dou, W. Sun, Nano Energy 83 (2021) 105850-105857.
    [20]
    G. Zhao, P. Li, N. Cheng, S.X. Dou, W. Sun, Adv. Mater. 32 (2020) 2000872.
    [21]
    T. Welton, Biophys. Rev. 10 (2018) 691-706.
    [22]
    I. Krossing, J.M. Slattery, C. Daguenet, P.J. Dyson, A. Oleinikova, H. Weingartner, J. Am. Chem. Soc. 128 (2006) 13427-13434.
    [23]
    J. Yuan, M. Antonietti, Polymer 52 (2011) 1469-1482.
    [24]
    T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, ACS Nano 5 (2011) 436-442.
    [25]
    A.G. Wallace, M.D. Symes, Trends Chem. 1 (2019) 247-258.
    [26]
    G.G. Eshetu, M. Armand, H. Ohno, B. Scrosati, S. Passerini, Energy Environ. Sci. 9 (2016) 49-61.
    [27]
    X. Zhao, S. Li, H. Cheng, J. Schmidt, A. Thomas, ACS Appl. Mater. Interfaces 10 (2018) 3912-3920.
    [28]
    M. Yi, B. Lu, X. Zhang, Y. Tan, Z. Zhu, Z. Pan, J. Zhang, Appl. Catal. B 283 (2021) 119635.
    [29]
    C. Zhang, B. Xin, Z. Xi, B. Zhang, Z. Li, H. Zhang, Z. Li, J. Hao, ACS Sustainable Chem. Eng. 6 (2017) 1468-1477.
    [30]
    M. Yi, S. Hu, N. Li, H. Wang, J. Zhang, J. Energy Chem. 72 (2022) 453-464.
    [31]
    Y.Y. Zhang, N. Zhang, P. Peng, R. Wang, Y. Jin, Y.K. Lv, X. Wang, W. Wei, S.Q. Zang, Small Methods 5 (2021) 2100505-2100514.
    [32]
    B. Liu, Y.-F. Zhao, H.-Q. Peng, Z.-Y. Zhang, C.-K. Sit, M.-F. Yuen, T.-R. Zhang, C.-S. Lee, W.-J. Zhang, Adv. Mater. 29 (2017) 1606521.
    [33]
    D.Y. Li, L.L. Liao, H.Q. Zhou, Y. Zhao, F.M. Cai, J.S. Zeng, F. Liu, H. Wu, D.S. Tang, F. Yu, Mater. Today Phys. 16 (2021) 100314-100321.
    [34]
    F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Nat. Commun. 9 (2018) 4531-4540.
    [35]
    L. Liao, C. Cheng, H. Zhou, Y. Qi, D. Li, F. Cai, B. Yu, R. Long, F. Yu, Mater. Today Phys. 22 (2022) 100589-100597.
    [36]
    D.W. Redman, M.J. Rose, K.J. Stevenson, Langmuir 33 (2017) 9354-9360.
    [37]
    T. Li, D. Tang, C. Li, Int. J. Hydrog. Energy 42 (2017) 21786-21792.
    [38]
    D. Tang, T. Li, C.M. Li, Int. J. Hydrog. Energy 44 (2019) 1720-1726.
    [39]
    T. Li, D. Tang, C.M. Li, Electrochim. Acta 295 (2019) 1027-1033.
    [40]
    G. Liu, B. Wang, P. Ding, Y. Ye, W. Wei, W. Zhu, L. Xu, J. Xia, H. Li, J. Alloys Compd. 797 (2019) 849-858.
    [41]
    T. Li, Y. Chen, W. Hu, W. Yuan, Q. Zhao, Y. Yao, B. Zhang, C. Qiu, C.M. Li, Nanoscale 13 (2021) 4444-4450.
    [42]
    L. Gidi, R. Arce, J. Ibarra, M. Isaacs, M.J. Aguirre, G. Ramirez, Electrochim. Acta 372 (2021) 137859-137867.
    [43]
    Q. Wang, Y. Gao, Z. Ma, Y. Zhang, W. Ni, H.A. Younus, C. Zhang, Z. Chen, S. Zhang, J. Energy Chem. 54 (2021) 342-351.
    [44]
    Z. Xue, L. Qin, J. Jiang, T. Mu, G. Gao, Phys. Chem. Chem. Phys. 20 (2018) 8382-8402.
    [45]
    T.N. Pham-Truong, O. Mebarki, C. Ranjan, H. Randriamahazaka, J. Ghilane, ACS Appl. Mater. Interfaces. 11 (2019) 38265-38275.
    [46]
    H. Mao, X. Guo, Q. Fan, Y. Fu, H. Yang, D. Liu, S. Wu, Q. Wu, X.-M. Song, Chem. Eng. J. 404 (2021) 126253-126264.
    [47]
    B. Murugesan, N. Pandiyan, M. Arumugam, M. Veerasingam, J. Sonamuthu, A.R. Jeyaraman, S. Samayanan, S. Mahalingam, Carbon 151 (2019) 53-67.
    [48]
    M. Zhao, T. Li, L. Jia, H. Li, W. Yuan, C.M. Li, ChemSusChem 12 (2019) 5041-5050.
    [49]
    X. Bai, Q. Wang, G. Xu, Y. Ning, K. Huang, F. He, Z.J. Wu, J. Zhang, Chemistry 23 (2017) 16862-16870.
    [50]
    J. Sun, N. Guo, Z. Shao, K. Huang, Y. Li, F. He, Q. Wang, Adv. Energy Mater. 8 (2018) 1800980.
    [51]
    J. Sun, Y.-R. Chen, K. Huang, K. Li, Q. Wang, Appl. Surf. Sci. 500 (2020) 144052.
    [52]
    A.A. Chaugule, V.S. Mane, H.A. Bandal, H. Kim, A.S. Kumbhar, ACS Sustainable Chem. Eng. 7 (2019) 14889-14898.
    [53]
    T. Qin, J. Zhao, R. Shi, C. Ge, Q. Li, Chem. Eng. J. 399 (2020) 125656-125668.
    [54]
    A. Abouserie, G.A. El-Nagar, B. Heyne, C. Gunter, U. Schilde, M.T. Mayer, S. Stojkovikj, C. Roth, A. Taubert, ACS Appl. Mater. Interfaces 12 (2020) 52560-52570.
    [55]
    S. Ji, T. Li, Z.D. Gao, Y.Y. Song, J.J. Xu, Chem. Commun. 54 (2018) 8765-8768.
    [56]
    A. Chinnappan, H. Bandal, S. Ramakrishna, H. Kim, Chem. Eng. J. 335 (2018) 215-220.
    [57]
    S. Shahsavarifar, M. Masteri-Farahani, M.R. Ganjali, Colloid Surface A 632 (2022) 127812-127811.
    [58]
    Y. Ding, A. Klyushin, X. Huang, T. Jones, D. Teschner, F. Girgsdies, T. Rodenas, R. Schlogl, S. Heumann, Angew. Chem. Int. Ed. 57 (2018) 3514-3518.
    [59]
    T.N. Pham Truong, H. Randriamahazaka, J. Ghilane, ACS Catal. 8 (2018) 869-875.
    [60]
    W. Ma, D. Li, L. Liao, H. Zhou, F. Zhang, X. Zhou, Y. Mo, F. Yu, Small 19 (2023) e2207082.
    [61]
    F. Zhang, Y. Liu, F. Yu, H. Pang, X. Zhou, D. Li, W. Ma, Q. Zhou, Y. Mo, H. Zhou, ACS Nano (2023) 1681-1692.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (267) PDF downloads(86) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return