Citation: | Xi Li, Dehua Xu, Aoxuan Wang, Chengxin Peng, Xingjiang Liu, Jiayan Luo. Metal-organic cage as fluorescent probe for LiPF6 in lithium batteries. Green Energy&Environment, 2024, 9(10): 1592-1600. doi: 10.1016/j.gee.2023.06.001 |
[1] |
D.D. Macneil, J.R. Dahn, J. Electrochem. Soc. 150 (2003) A21-A28.
|
[2] |
P. Ping, Q. Wang, J. Sun, H. Xiang, C. Chen, J. Electrochem. Soc. 157 (2010) A1170-A1176.
|
[3] |
Q.-S. Wang, J.-H. Sun, G.-Q. Chu, X.-L. Yao, C.-H. Chen, J. Therm. Anal. Calorim. 89 (2007) 245-250.
|
[4] |
Q. Wang, P. Ping, J. Sun, C. Chen, Thermochim. Acta 517 (2011) 16-23.
|
[5] |
C. Xu, S. Renault, M. Ebadi, Z. Wang, E. Bjorklund, D. Guyomard, D. Brandell, K. Edstrom, T. Gustafsson, Chem. Mater. 29 (2017) 2254-2263.
|
[6] |
G. Avall, J. Wallenstein, G. Cheng, K.L. Gering, P. Johansson, D.P. Abraham, J. Electrochem. Soc. 168 (2021).
|
[7] |
S. Solchenbach, M. Metzger, M. Egawa, H. Beyer, H.A. Gasteiger, J. Electrochem. Soc. 165 (2018) A3022-A3028.
|
[8] |
E. Markevich, G. Salitra, M. Afri, J. Kulisch, P. Hartmann, D. Aurbach, J. Electrochem. Soc. 166 (2019) A1685-A1691.
|
[9] |
H.-G. Schweiger, M. Multerer, U. Wietelmann, J.-C. Panitz, T. Burgemeister, G.H. J., J. Electrochem. Soc. 152 (2005) A622-A627.
|
[10] |
M.K. Rahman, Y. Saito, J. Power Sources 174 (2007) 889-894.
|
[11] |
M. Grutzke, V. Kraft, B. Hoffmann, S. Klamor, J. Diekmann, A. Kwade, M. Winter, S. Nowak, J. Power Sources 273 (2015) 83-88.
|
[12] |
C. Wang, J. Shang, L. Tian, H. Zhao, P. Wang, K. Feng, G. He, J.Z. Liu, W. Zhu, G. Li, Chin. Chem. Lett. 32 (2021) 4006-4010.
|
[13] |
J.Y. Lee, H.D. Root, R. Ali, W. An, V.M. Lynch, S. Bahring, I.S. Kim, J.L. Sessler, J.S. Park, J. Am. Chem. Soc. 142 (2020) 19579-19587.
|
[14] |
Z. Qiao, H. Han, X. Li, X. Wang, T. Lan, R. Wang, W. Ji, ACS Appl. Nano Mater. 5 (2022) 11465-11473.
|
[15] |
N. Xu, Y.-X. Tan, E.I.S.M. El-Sayed, D. Yuan, Cryst. Growth Des. 22 (2022) 2768-2773.
|
[16] |
M.J. Jung, S.J. Kim, M.H. Lee, ACS Omega 5 (2020) 28369-28374.
|
[17] |
C. Liu, Y. Jin, D. Qi, X. Ding, H. Ren, H. Wang, J. Jiang, Chem. Sci. 13 (2022) 7014-7020.
|
[18] |
L. Szyszka, M. Gorecki, P. Cmoch, S. Jarosz, J. Org. Chem. 86 (2021) 5129-5141.
|
[19] |
X. Zhang, X. Dong, W. Lu, D. Luo, X.W. Zhu, X. Li, X.P. Zhou, D. Li, J. Am. Chem. Soc. 141 (2019) 11621-11627.
|
[20] |
C.Y. Liu, X.R. Chen, H.X. Chen, Z. Niu, H. Hirao, P. Braunstein, J.P. Lang, J. Am. Chem. Soc. 142 (2020) 6690-6697.
|
[21] |
X. Zhang, J. Liu, B. Chen, X. He, X. Li, P. Wei, P.F. Gao, G. Zhang, J.W.Y. Lam, B.Z. Tang, Matter 5 (2022) 3499-3512.
|
[22] |
Y. Liu, A. Sengupta, K. Raghavachari, A.H. Flood, Chem 3 (2017) 411-427.
|
[23] |
S. Chaudhary, R. Rai, K. Sahoo, M. Kumar, ACS Omega 7 (2022) 7460-7471.
|
[24] |
B. Qiao, G.M. Leverick, W. Zhao, A.H. Flood, J.A. Johnson, Y. Shao-Horn, J. Am. Chem. Soc. 140 (2018) 10932-10936.
|
[25] |
H. Li, G. Parigi, C. Luchinat, T.J. Meade, J. Am. Chem. Soc. 141 (2019) 6224-6233.
|
[26] |
Y. Ni, F. Gordillo-Gamez, M. Pena Alvarez, Z. Nan, Z. Li, S. Wu, Y. Han, J. Casado, J. Wu, J. Am. Chem. Soc. 142 (2020) 12730-12742.
|
[27] |
F. Begato, R. Penasa, G. Licini, C. Zonta, ACS Sens. 7 (2022) 1390-1394.
|
[28] |
J. Hu, J. Cui, B. Gao, L. Yang, Q. Ding, Y. Li, Y. Mo, H. Chen, X. Cui, H. Xing, Matter 5 (2022) 3901-3911.
|
[29] |
H. Jiang, S.M. Moosavi, J. Czaban-Jozwiak, B. Torre, A. Shkurenko, Z.O. Ameur, J. Jia, N. Alsadun, O. Shekhah, E. Di Fabrizio, B. Smit, M. Eddaoudi, Matter 6 (2023) 285-295.
|
[30] |
H. Ding, Y. Yang, B. Li, F. Pan, G. Zhu, M. Zeller, D. Yuan, C. Wang, Chem. Commun. (Camb.) 51 (2015) 1976-1979.
|
[31] |
E.M. Fatila, M. Pink, E.B. Twum, J.A. Karty, A.H. Flood, Chem. Sci. 9 (2018) 2863-2872.
|
[32] |
L. Mei, P. Ren, Q.Y. Wu, Y.B. Ke, J.S. Geng, K. Liu, X.Q. Xing, Z.W. Huang, K.Q. Hu, Y.L. Liu, L.Y. Yuan, G. Mo, Z.H. Wu, J.K. Gibson, Z.F. Chai, W.Q. Shi, J. Am. Chem. Soc. 142 (2020) 16538-16545.
|
[33] |
T. Mitra, K.E. Jelfs, M. Schmidtmann, A. Ahmed, S.Y. Chong, D.J. Adams, A.I. Cooper, Nat. Chem. 5 (2013) 276-281.
|
[34] |
D. Gao, J.-H. Chen, S. Fang, T. Ma, X.-H. Qiu, J.-G. Ma, Q. Gu, P. Cheng, Matter 4 (2021) 1001-1016.
|
[35] |
L. Chen, P.S. Reiss, S.Y. Chong, D. Holden, K.E. Jelfs, T. Hasell, M.A. Little, A. Kewley, M.E. Briggs, A. Stephenson, K.M. Thomas, J.A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D.M. Strachan, P.K. Thallapally, A.I. Cooper, Nat. Mater. 13 (2014) 954-960.
|
[36] |
A. Kai, B.D. Egleston, A. Tarzia, R. Clowes, M.E. Briggs, K.E. Jelfs, A.I. Cooper, R.L. Greenaway, Adv. Funct. Mater. 31 (2021).
|
[37] |
K. Jie, N. Onishi, J.A. Schott, I. Popovs, D.E. Jiang, S. Mahurin, S. Dai, Angew. Chem. Int. Ed. Engl. 59 (2020) 2268-2272.
|
[38] |
G. Liu, Z. Ju, D. Yuan, M. Hong, Inorg. Chem. 52 (2013) 13815-13817.
|
[39] |
Y. Zhang, S. Mollick, M. Tricarico, J. Ye, D.A. Sherman, J.C. Tan, ACS Sens. 7 (2022) 2338-2344.
|
[40] |
R. Tao, X. Zhao, T. Zhao, M. Zhao, R. Li, T. Yang, L. Tang, Y. Jin, W. Zhang, L. Qiu, J. Phys. Chem. Lett. 13 (2022) 6604-6611.
|
[41] |
A. Mukhopadhyay, S. Jindal, G. Savitha, J.N. Moorthy, Inorg. Chem. 59 (2020) 6202-6213.
|
[42] |
R.K. Venkatraman, A.J. Orr-Ewing, Acc. Chem. Res. 54 (2021) 4383-4394.
|
[43] |
M. Wang, Y. Song, W. Wei, H. Liang, Y. Yi, X. Wang, D. Ren, L. Wang, J. Wang, Y. Wei, X. He, Y. Yang, Matter 6 (2023) 873-886.
|
[44] |
Y. Tu, Z. Zhao, W.Y.L. Jacky, B.Z. Tang, Natl. Sci. Rev. 8 (2021) nwab013.
|
[45] |
S. Xu, Y. Duan, B. Liu, Adv. Mater. 32 (2020) e1903530.
|
[46] |
J. Guan, R. Wei, A. Prlj, J. Peng, K.H. Lin, J. Liu, H. Han, C. Corminboeuf, D. Zhao, Z. Yu, J. Zheng, Angew. Chem. Int. Ed. Engl. 59 (2020) 14903-14909.
|
[47] |
E.A. Jares-Erijman, T.M. Jovin, Nat. Biotechnol. 21 (2003) 1387-1395.
|
[48] |
J. Yang, C.C. Dong, X.L. Chen, X. Sun, J.Y. Wei, J.F. Xiang, J.L. Sessler, H.Y. Gong, J. Am. Chem. Soc. 141 (2019) 4597-4612.
|
[49] |
D. Dai, Z. Li, J. Yang, C. Wang, J.-R. Wu, Y. Wang, D. Zhang, Y.-W. Yang, J. Am. Chem. Soc. 141 (2019) 4756-4763.
|
[50] |
Z. Wang, C. Wang, Adv. Mater. 33 (2021) e2005819.
|
[51] |
X.Z. Wang, M.Y. Sun, Z. Huang, M. Xie, R. Huang, H. Lu, Z. Zhao, X.P. Zhou, D. Li, Adv. Optical Mater. 9 (2021) 2002096.
|
[52] |
X.-Y. Yao, Q. Wang, Q. Liu, M. Pang, X.-M. Du, B. Zhao, Y. Li, W.-J. Ruan, ACS Omega 5 (2020) 712-717.
|
[53] |
J.L. Allen, O. Borodin, D.M. Seo, W.A. Henderson, J. Power Sources 267 (2014) 821-830.
|
[1] | Jianmin Yua, Gongao Peng, Lishan Peng, Qingjun Chen, Chenliang Su, Lu Shang, Tierui Zhang. Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis. Green Energy&Environment. doi: 10.1016/j.gee.2024.08.009 |
[2] | Miaojie Yu, Weiwei Zhang, Xueyan Liu, Guohui Zhao, Jun Du, Yongzhen Wu, WeiHong Zhu. Energy transfer enhanced photocatalytic hydrogen evolution in organic heterostructure nanoparticles via flash nanoprecipitation processing. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.001 |
[3] | Peng Gao, Pei Tang, Ying Mo, Peitao Xiao, Wang Zhou, Shi Chen, Hongliang Dong, Ziwei Li, Chaohe Xu, Jilei Liu. Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage. Green Energy&Environment, 2024, 9(5): 909-918. doi: 10.1016/j.gee.2022.10.003 |
[4] | Siyuan Sun, Weijie Bao, Fan Yang, Xingru Yan, Yang Sun, Ge Zhang, Wang Yang, Yongfeng Li. Electrochemical synthesis of FeNx doped carbon quantum dots for sensitive detection of Cu2+ ion. Green Energy&Environment, 2023, 8(1): 141-150. doi: 10.1016/j.gee.2021.04.005 |
[5] | Xiaoge Liu, Yuying Shan, Songtao Zhang, Qingquan Kong, Huan Pang. Application of metal organic framework in wastewater treatment. Green Energy&Environment, 2023, 8(3): 698-721. doi: 10.1016/j.gee.2022.03.005 |
[6] | Liuting Zhang, Farai Michael Nyahuma, Haoyu Zhang, Changshan Cheng, Jiaguang Zheng, Fuying Wu, Lixin Chen. Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2. Green Energy&Environment, 2023, 8(2): 589-600. doi: 10.1016/j.gee.2021.09.004 |
[7] | Xue-Qian Wu, Peng-Dan Zhang, Xin Zhang, Jing-Hao Liu, Tao He, Jiamei Yu, Jian-Rong Li. Ethylene purification in a metal-organic framework over a wide temperature range via pore confinement. Green Energy&Environment, 2023, 8(6): 1703-1710. doi: 10.1016/j.gee.2022.03.015 |
[8] | Wei Yu, Ming Gao, Guanhe Rim, Tony G. Feric, Mark L. Rivers, Ammar Alahmed, Aqil Jamal, Ah-Hyung Alissa Park. Novel in-capsule synthesis of metal-organic framework for innovative carbon dioxide capture system. Green Energy&Environment, 2023, 8(3): 767-774. doi: 10.1016/j.gee.2021.08.002 |
[9] | Yanxue Guo, Hui Liu, Dong Chen, Jianglan Qu, Jun Yang. High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy&Environment, 2022, 7(2): 229-235. doi: 10.1016/j.gee.2020.09.001 |
[10] | Xinru Tang, Nan Li, Huan Pang. Metal-organic frameworks-derived metal phosphides for electrochemistry application. Green Energy&Environment, 2022, 7(4): 636-661. doi: 10.1016/j.gee.2021.08.003 |
[11] | Shuai Cao, Jingyun Jiang, Qingyong Tian, Cang Guo, Xuzhe Wang, Kun Dai, Qun Xu. Building of multifunctional and hierarchical HxMoO3/PNIPAM hydrogel for high-efficiency solar vapor generation. Green Energy&Environment, 2022, 7(5): 1006-1013. doi: 10.1016/j.gee.2020.12.012 |
[12] | Xiaomin Zhang, Wenjie Xiong, Zengyu Yin, Yongle Chen, Youting Wu, Xingbang Hu. A novel proton-gradient-transfer acid complexes as an efficient and reusable catalyst for fatty acid esterification. Green Energy&Environment, 2022, 7(1): 137-144. doi: 10.1016/j.gee.2020.08.009 |
[13] | Shen Zhang, Xing Zhang, Yuan Rui, Ruihu Wang, Xiaoju Li. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy&Environment, 2021, 6(4): 458-478. doi: 10.1016/j.gee.2020.10.013 |
[14] | Chongxiong Duan, Yi Yu, Jing Xiao, Yuanyuan Li, Pengfei Yang, Fei Hu, Hongxia Xi. Recent advancements in metal–organic frameworks for green applications. Green Energy&Environment, 2021, 6(1): 33-49. doi: 10.1016/j.gee.2020.04.006 |
[15] | Xueying Yuan, Xiaomei Deng, Chengzhi Cai, Zenan Shi, Hong Liang, Shuhua Li, Zhiwei Qiao. Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air. Green Energy&Environment, 2021, 6(5): 759-770. doi: 10.1016/j.gee.2020.06.024 |
[16] | Zhengrun Chen, Hongru Zhang, Huiyuan Li, Ying Xu, Yuanyuan Shen, Zhaoyou Zhu, Jun Gao, Yixin Ma, Yinglong Wang. Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model. Green Energy&Environment, 2021, 6(3): 380-391. doi: 10.1016/j.gee.2021.02.008 |
[17] | Haishun Jiang, Siyu Zhao, Wenyao Li, Tobias P. Neville, Isil Akpinar, Paul R. Shearing, Dan J.L. Brett, Guanjie He. Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy&Environment, 2020, 5(4): 506-512. doi: 10.1016/j.gee.2020.07.009 |
[18] | Yongan Yang. Production of lithium metal with ion-selective solid electrolytes. Green Energy&Environment, 2020, 5(4): 382-384. doi: 10.1016/j.gee.2020.04.011 |
[19] | Fan Li, Xueya Dai, Wei Qi. Primary amine coupling on nanocarbon catalysts: Reaction mechanism and kinetics via fluorescence probe analysis. Green Energy&Environment, 2020, 5(4): 453-460. doi: 10.1016/j.gee.2020.09.008 |
[20] | Fenglei Lyu, Qingfa Wang, Han Zhu, Mingliang Du, Li Wang, Xiangwen Zhang. A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution. Green Energy&Environment, 2017, 2(2): 151-159. doi: 10.1016/j.gee.2017.01.007 |
1. | Brioual, B., El-Habib, A., Rossi, Z. et al. Influence of the concentration of KOH-based aqueous electrolyte on the electrochemical behavior of NiO thin film. Journal of the Indian Chemical Society, 2024, 101(7): 101170. doi:10.1016/j.jics.2024.101170 |