Volume 9 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Mingming Zhang, Qi Chen, Guangzhao Zhou, Jintao Sun, He Lin. Low-temperature chemistry in plasma-driven ammonia oxidative pyrolysis. Green Energy&Environment, 2024, 9(9): 1477-1488. doi: 10.1016/j.gee.2023.05.010
Citation: Mingming Zhang, Qi Chen, Guangzhao Zhou, Jintao Sun, He Lin. Low-temperature chemistry in plasma-driven ammonia oxidative pyrolysis. Green Energy&Environment, 2024, 9(9): 1477-1488. doi: 10.1016/j.gee.2023.05.010

Low-temperature chemistry in plasma-driven ammonia oxidative pyrolysis

doi: 10.1016/j.gee.2023.05.010
  • Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagation speed of ammonia pose significant challenges to its application in engines. Non-equilibrium plasma has been identified as a promising method, but current research on plasma-enhanced ammonia combustion is limited and primarily focuses on ignition characteristics revealed by kinetic models. In this study, low-temperature and low-pressure chemistry in plasma-assisted ammonia oxidative pyrolysis is investigated by integrated studies of steady-state GC measurements and mathematical simulation. The detailed kinetic mechanism of NH3 decomposition in plasma-driven Ar/NH3 and Ar/NH3/O2 mixtures has been developed. The numerical model has good agreements with the experimental measurements in NH3/O2 consumption and N2/H2 generation, which demonstrates the rationality of modelling. Based on the modelling results, species density profiles, path flux and sensitivity analysis for the key plasma-produced species such as NH2, NH, H2, OH, H, O, O(1D), O2(a1Δg), O2(b1Σg+), Ar*, H-, Ar+, NH3+, O2- in the discharge and afterglow are analyzed in detail to illustrate the effectiveness of the active species on NH3 excitation and decomposition at low temperature and relatively higher E/N values. The results revealed that NH2, NH, H as well as H2 are primarily generated through the electron collision reactions e + NH3 → e + NH2 + H, e + NH3 → e + NH + H2 and the excited-argon collision reaction Ar* + NH3 + H → Ar + NH2 + 2H, which will then react with highly reactive oxidative species such as O2*, O*, O, OH, and O2 to produce stable products of NOx and H2O. NH3 → NH is found a specific pathway for NH3 consumption with plasma assistance, which further highlights the enhanced kinetic effects.

     

  • loading
  • [1]
    A. Huovila, H. Siikavirta, C. Antuna Rozado, J. Rokman, P. Tuominen, S. Paiho, A. Hedman, P. Ylen, Journal of Cleaner Production 341(2022)130912.
    [2]
    https://www.ren21.net/reports/global-status-report/.
    [3]
    H. Liu, J. Li, F. Du, L. Yang, S. Huang, J. Gao, C. Li, C. Guo, Green Energy&Environment (2022) S2468025722000541.
    [4]
    Y. Li, H. Wang, B. Chang, Y. Guo, Z. Li, S.H. Talib, Z. Lu, J. Wang, Green Energy&Environment (2022) S2468025722000097.
    [5]
    M.I. Ahmed, D.B. Hibbert, C. Zhao, Green Energy&Environment (2022) S2468025722001455.
    [6]
    H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Proceedings of the Combustion Institute 37(2019)109-133.
    [7]
    Z. Wan, Y. Tao, J. Shao, Y. Zhang, H. You, Energy Conversion and Management 228(2021)113729.
    [8]
    C.W. Gross, S.-C. Kong, Fuel 103(2013)1069-1079.
    [9]
    D. Chen, C. Han, Q. Sun, J. Ding, Q. Huang, T.-T. Li, Y. Hu, J. Qian, S. Huang, Green Energy&Environment 8(2023)258-266.
    [10]
    G. Yang, S. Guan, S. Mehdi, Y. Fan, B. Liu, B. Li, Green Energy&Environment 6(2021)236-243.
    [11]
    Y. Qin, Y. Chen, X. Zeng, Y. Liu, X. Lin, W. Zhang, X. Qiu, Green Energy&Environment (2022) S2468025722000723.
    [12]
    H. Xing, C. Stuart, S. Spence, H. Chen, Journal of Cleaner Production 297(2021)126651.
    [13]
    O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Proceedings of the Combustion Institute 36(2017)3351-3359.
    [14]
    E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Combustion and Flame 187(2018)185-198.
    [15]
    Y.A. Lebedev, Plasma Sources Sci. Technol. 24(2015)053001.
    [16]
    X. Tu, J.C. Whitehead, International Journal of Hydrogen Energy 39(2014)9658-9669.
    [17]
    G. Sun, W. Liu, C. Li, R. Zhang, J. Phys.:Conf. Ser. 441(2013)012023.
    [18]
    V.P. Demkin, S.V. Melnichuk, Russ Phys J 60(2017)339-345.
    [19]
    X. Mao, Q. Chen, A.C. Rousso, T.Y. Chen, Y. Ju, Combustion and Flame 206(2019)522-535.
    [20]
    A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, H. Bindslev, Plasma Process. Polym. 2(2005)193-200.
    [21]
    C. Yao, S. Chen, S. Wang, Z. Chang, A. Sun, H. Mu, G.-J. Zhang, J. Phys. D:Appl. Phys. 51(2018)225201.
    [22]
    G. Faingold, J.K. Lefkowitz, Proceedings of the Combustion Institute 38(2021)6661-6669.
    [23]
    J. Choe, W. Sun, T. Ombrello, C. Carter, Combustion and Flame 228(2021)430-432.
    [24]
    T.S. Taneja, P.N. Johnson, S. Yang, Combustion and Flame 245(2022)112327.
    [25]
    Y. Ju, W. Sun, Progress in Energy and Combustion Science 48(2015)21-83.
    [26]
    X. Mao, A. Rousso, Q. Chen, Y. Ju, Proceedings of the Combustion Institute 37(2019)5545-5552.
    [27]
    A.A. Panarin, V.S. Skakun, E.A. Sosnin, V.F. Tarasenko, Opt. Spectrosc. 122(2017)168-174.
    [28]
    D. Zhang, Q. Gao, B. Li, J. Liu, Z. Li, Appl. Opt. 58(2019)1210.
    [29]
    A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, H. Kobayashi, Mechanical Engineering Journal 2(2015)14-00402-14-00402.
    [30]
    X.Z. Xinluo Zhao, T.O. Tsugio Okazaki, A.K. Atsuo Kasuya, H.S. Hiroshi Shimoyama, Y.A. Yoshinori Ando, Jpn. J. Appl. Phys. 38(1999)6014.
    [31]
    J.E. Nicholas, C.A. Amodio, Plasma Chem Plasma Process 2(1982)331-339.
    [32]
    P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Progress in Energy and Combustion Science 67(2018)31-68.
    [33]
    G.J.M. Hagelaar, L.C. Pitchford, Plasma Sources Sci. Technol. 14(2005)722-733.
    [34]
    Morgan database. www.lxcat.net/Morgan.
    [35]
    Phelps database.www.lxcat.net/Phelps.
    [36]
    TRINITI database.www.lxcat.net/TRINITI.
    [37]
    http://www.zdplaskin.laplace.univ-tlse.fr/.
    [38]
    Lutz AE, Kee RJ, Miller JA. SENKIN:A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis[R]. Livermore:Sandia National Laboratories, 1987:Report SAND87-8248.
    [39]
    X. Mao, Q. Chen, AIAA Journal 56(2018)4312-4320.
    [40]
    X. Mao, G. Li, Q. Chen, Y. Zhao, Chinese Journal of Chemical Engineering 24(2016)1719-1727.
    [41]
    T. Mendiara, P. Glarborg, Combustion and Flame 156(2009)1937-1949.
    [42]
    Z. Tian, Y. Li, L. Zhang, P. Glarborg, F. Qi, Combustion and Flame 156(2009)1413-1426.
    [43]
    H. Nakamura, S. Hasegawa, T. Tezuka, Combustion and Flame 185(2017)16-27.
    [44]
    J. Sun, Q. Chen, B. Zhao, C. Guo, J. Liu, M. Zhang, D. Li, J. Phys. D:Appl. Phys. 55(2022)135203.
    [45]
    J. Sun, Q. Chen, X. Yang, B.E. Koel, J. Phys. D:Appl. Phys. 53(2020)064001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return