Volume 9 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Sen Ma, Zheng Li, Jonathan Sperry, Xing Tang, Yong Sun, Lu Lin, Jian Liu, Xianhai Zeng. CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose. Green Energy&Environment, 2024, 9(7): 1101-1111. doi: 10.1016/j.gee.2023.05.009
Citation: Sen Ma, Zheng Li, Jonathan Sperry, Xing Tang, Yong Sun, Lu Lin, Jian Liu, Xianhai Zeng. CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose. Green Energy&Environment, 2024, 9(7): 1101-1111. doi: 10.1016/j.gee.2023.05.009

CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose

doi: 10.1016/j.gee.2023.05.009
  • The conversion of biomass into sugar platform compounds is very important for the biorefinery industry. Pretreatment is essential to the biomass of the sugar platform, however, the lignin obtained by pretreatment, as a key part of lignocellulose, generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars. In this study, p-TsOH (p-toluenesulfonic acid), DES (Deep eutectic solvent) and CAOSA (cooking with active oxygen and solid alkali) pretreatment ways were used to fraction lignin from bamboo biomass. After CAOSA treatment, the hydrolysis efficiency of the pulp was 95.57%. Moreover, the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system. In this work, the results showed that CAOSA-extracted lignin with lower Đ (1.31–1.25) had a better adsorption effect on the enzyme protein. p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis. In addition, the presence of -COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.

     

  • loading
  • [1]
    H. Chen, J. Liu, X. Chang, D. Chen, Y. Xue, P. Liu, H. Lin, S. Han, Fuel Process. Technol. 160(2017)196-206.
    [2]
    M. Mujtaba, L. Fraceto, M. Fazeli, S. Mukherjee, S.M. Savassa, G.A. De Medeiros, A.D.E. Santo Pereira, S.D. Mancini, J. Lipponen, F. Vilaplana, J. Clean. Prod.(2023)136815.
    [3]
    B.N. Madanayake, S. Gan, C. Eastwick, H.K. Ng, Fuel Process. Technol. 159(2017)287-305.
    [4]
    A.K. Chandel, V.K. Garlapati, A.K. Singh, F.a.F. Antunes, S.S. Da Silva, Bioresour. Technol. 264(2018)370-381.
    [5]
    Y. Fan, C. Liu, X. Kong, Y. Han, M. Lei, R. Xiao, Green Energy Environ. 7(2022)1318-1326.
    [6]
    K. Wu, M. Cao, Q. Zeng, X. Li, Green Energy Environ. 8(2022)383-405.
    [7]
    X. Wang, S. Feng, Y. Wang, Y. Zhao, S. Huang, S. Wang, X. Ma, Green Energy Environ 8(2023)927-937.
    [8]
    C. Chio, M. Sain, W. Qin, Renew. Sust. Energ. Rev. 107(2019)232-249.
    [9]
    C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Chem. Rev. 115(2015)11559-11624.
    [10]
    Y. Zhu, Z. Li, J. Chen, Green Energy Environ. 4(2019)210-244.
    [11]
    S. Ma, X. Yang, Z. Guo, X. Zhang, T. Tan, J. Clean. Prod. 249(2020)119421.
    [12]
    X.-D. Hou, G.-J. Feng, M. Ye, C.-M. Huang, Y. Zhang, Bioresour. Technol. 238(2017)139-146.
    [13]
    C. Lehmann, M. Bocola, W.R. Streit, R. Martinez, U. Schwaneberg, Appl. Microbiol. Biot. 98(2014)5775-5785.
    [14]
    H. Qin, X. Hu, J. Wang, H. Cheng, L. Chen, Z. Qi, Green Energy Environ. 5(2020)8-21.
    [15]
    L. Li, X. Li, S. Zhang, H. Yan, X. Qiao, H. He, T. Zhu, B. Tang, Green Energy Environ. 7(2022)840-853.
    [16]
    C. Zhang, B. Xin, T. Chen, H. Ying, Z. Li, J. Hao, Green Energy Environ. 7(2022)1217-1227.
    [17]
    N. Ding, H. Liu, X. Zeng, Y. Sun, X. Tang, L. Lin, RSC Adv. 10(2020)16481-16489.
    [18]
    Q. Yang, J. Shi, L. Lin, Energ. Fuel. 26(2012)6999-7004.
    [19]
    Q. Yang, J. Shi, L. Lin, L. Peng, J. Zhuang, Bioresour. Technol. 123(2012)49-54.
    [20]
    N. Ding, X. Song, Y. Jiang, B. Luo, X. Zeng, Y. Sun, X. Tang, T. Lei, L. Lin, Sustain. Energ. Fuels. 2(2018)2206-2214.
    [21]
    Y. Jiang, X. Zeng, R. Luque, X. Tang, Y. Sun, T. Lei, S. Liu, L. Lin, ChemSusChem 10(2017)3982-3993.
    [22]
    T. Xie, L. Lin, C. Pang, J. Zhuang, J. Shi, Q. Yang, Carbohyd. Polym. 94(2013)807-813.
    [23]
    H. Ji, J. Zhu, R. Gleisner, RSC ADV. 7(2017)46208-46214.
    [24]
    K.L. Strobel, K.A. Pfeiffer, H.W. Blanch, D.S. Clark, J. Biol. Chem. 290(2015)22818-22826.
    [25]
    Z. Yu, K.S. Gwak, T. Treasure, H. Jameel, H.M. Chang, S. Park, ChemSusChem 7(2014)1942-1950.
    [26]
    T. Pielhop, G.O. Larrazabal, M.H. Studer, S. Brethauer, C.-M. Seidel, P.R. Von Rohr, Green Chem. 17(2015)3521-3532.
    [27]
    F. Guo, W. Shi, W. Sun, X. Li, F. Wang, J. Zhao, Y. Qu, Biotechnol. Biofuels 7(2014)1-10.
    [28]
    C. Lai, M. Tu, Z. Shi, K. Zheng, L.G. Olmos, S. Yu, Bioresourc. Technol. 163(2014)320-327.
    [29]
    Y. Xu, S.-C. Sun, C. Zhang, C.-Y. Ma, J.-L. Wen, T.-Q. Yuan, Chem. Eng. J.(2023)142213.
    [30]
    Z. Guo, J. Mao, Q. Zhang, F. Xu, Ind. Crop. Prod. 188(2022)115453.
    [31]
    M. Peng, J. Zhu, Y. Luo, T. Li, X. Xia, C. Qin, C. Liang, H. Bian, S. Yao, Bioresource Technol. 363(2022)127879.
    [32]
    X. Yin, T. Cai, C. Liu, C. Huang, J. Wang, J. Hu, N. Li, J. Jiang, K. Wang, Chem. Eng. J. 437(2022)135408.
    [33]
    L. Kou, Y. Song, X. Zhang, T. Tan, Bioresour. Technol. 241(2017)424-429.
    [34]
    Y. Song, X. Shi, X. Yang, X. Zhang, T. Tan, Energ. Fuel. 34(2019)557-567.
    [35]
    L. Segal, J.J. Creely, A. Martin Jr, C. Conrad, Text. Res. J. 29(1959)786-794.
    [36]
    J. Zhang, Y. Song, B. Wang, X. Zhang, T. Tan, Renew. Energ. 88(2016)164-170.
    [37]
    W. Wang, F. Gu, J. Zhu, K. Sun, Z. Cai, S. Yao, W. Wu, Y. Jin, Ind. Crop. Prod. 150(2020)112423.
    [38]
    Q. Liu, T. Yuan, Q.-J. Fu, Y.-Y. Bai, F. Peng, C.-L. Yao, Cellulose 26(2019)9447-9462.
    [39]
    R. Wang, K. Wang, M. Zhou, J. Xu, J. Jiang, Bioresour. Technol. 328(2021)124873.
    [40]
    Z. Ling, Z. Guo, C. Huang, L. Yao, F. Xu, Bioresour. Technol. 305(2020)123025.
    [41]
    M. Wang, Y. Zhan, J. Zhao, Z. Li, Bioresour. Technol. 378(2023)129006.
    [42]
    L. Chen, J. Dou, Q. Ma, N. Li, R. Wu, H. Bian, D.J. Yelle, T. Vuorinen, S. Fu, X. Pan, Sci. Adv. 3(2017) e1701735.
    [43]
    H. Yu, Y. Xu, J. Hou, S. Nie, S. Liu, Q. Wu, Y. Liu, Y. Liu, S. Yu, Ind. Crop. Prod. 145(2020)111961.
    [44]
    Y. Jiang, N. Ding, B. Luo, Z. Li, X. Tang, X. Zeng, Y. Sun, S. Liu, T. Lei, L. Lin, ChemCatChem 9(2017)2544-2549.
    [45]
    S. Yu, X. Dong, P. Zhao, Z. Luo, Z. Sun, X. Yang, Q. Li, L. Wang, Y. Zhang, H. Zhou, Nat. Commun. 13(2022)3616.
    [46]
    V. Sewalt, W. Glasser, K. Beauchemin, J. Agr. Food. Chem. 45(1997)1823-1828.
    [47]
    M. Tu, X. Pan, J.N. Saddler, J. Agr. Food. Chem. 57(2009)7771-7778.
    [48]
    J.K. Ko, Y. Kim, E. Ximenes, M.R. Ladisch, Biotechnol. Bioeng. 112(2015)252-262.
    [49]
    J. Börjesson, R. Peterson, F. Tjerneld, Enzyme. Microb. Tech. 40(2007)754-762.
    [50]
    J. Rahikainen, S. Mikander, K. Marjamaa, T. Tamminen, A. Lappas, L. Viikari, K. Kruus, Biotechnol. Bioeng. 108(2011)2823-2834.
    [51]
    J.L. Rahikainen, R. Martin-Sampedro, H. Heikkinen, S. Rovio, K. Marjamaa, T. Tamminen, O.J. Rojas, K. Kruus, Bioresourc. Technol. 133(2013)270-278.
    [52]
    S. Sun, Y. Huang, R. Sun, M. Tu, Green. Chem. 18(2016)4276-4286.
    [53]
    C. Huang, X. Jiang, X. Shen, J. Hu, W. Tang, X. Wu, A. Ragauskas, H. Jameel, X. Meng, Q. Yong, Renew. Sust. Energ. Rev. 154(2022)111822.
    [54]
    M.-F. Li, S.-N. Sun, F. Xu, R.-C. Sun, Sep. Purif. Technol. 101(2012)18-25.
    [55]
    A. Salanti, L. Zoia, E.-L. Tolppa, G. Giachi, M. Orlandi, Microchem. J. 95(2010)345-352.
    [56]
    T.-Q. Yuan, S.-N. Sun, F. Xu, R.-C. Sun, J. Agr. Food Chem. 59(2011)10604-10614.
    [57]
    Y. Song, H. Ji, X. Shi, X. Yang, X. Zhang, Renew. Energ. 157(2020)1025-1034.
    [58]
    Y. Song, R.P. Chandra, X. Zhang, J.N. Saddler, Carbohyd. Polym. 250(2020)116956.
    [59]
    S.-L. Sun, J.-L. Wen, M.-G. Ma, R.-C. Sun, J. Agr. Food Chem. 62(2014)8120-8128.
    [60]
    Y.-Y. Wang, M. Li, C.E. Wyman, C.M. Cai, A.J. Ragauskas, ACS Sustain. Chem. Eng. 6(2018)6064-6072.
    [61]
    C. Huang, W. Lin, C. Lai, X. Li, Y. Jin, Q. Yong, Bioresour. Technol. 285(2019)121355.
    [62]
    V. Passoni, C. Scarica, M. Levi, S. Turri, G. Griffini, ACS Sustain. Chem. Eng. 4(2016)2232-2242.
    [63]
    A. Khelfa, G. Finqueneisel, M. Auber, J. Weber, J. Therm. Anal. Calorim. 92(2008)795-799.
    [64]
    M. El Moustaqim, A. El Kaihal, M. El Marouani, S. Men-La-Yakhaf, M. Taibi, S. Sebbahi, S. El Hajjaji, F. Kifani-Sahban, Sustain. Chem. Pharm. 9(2018)63-68.
    [65]
    X. Lu, C. Wang, X. Li, J. Zhao, Bioresour. Technol. 245(2017)819-825.
    [66]
    J.-L. Wen, S.-N. Sun, T.-Q. Yuan, F. Xu, R.-C. Sun, Bioresour. Technol. 150(2013)278-286.
    [67]
    C. Su, K. Hirth, Z. Liu, Y. Cao, J. Zhu, Ind. Crop. Prod. 159(2021)113017.
    [68]
    B.-L. Xue, J.-L. Wen, R.-C. Sun, ACS Sustain. Chem. Eng. 2(2014)1474-1480.
    [69]
    S. Nakagame, R.P. Chandra, J.F. Kadla, J.N. Saddler, Biotechnol. Bioeng. 108(2011)538-548.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return