Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Yunxuan Zhao, Junyu Gao, Xuanang Bian, Han Tang, Tierui Zhang. From the perspective of experimental practice: High-throughput computational screening in photocatalysis. Green Energy&Environment, 2024, 9(1): 1-6. doi: 10.1016/j.gee.2023.05.008
Citation: Yunxuan Zhao, Junyu Gao, Xuanang Bian, Han Tang, Tierui Zhang. From the perspective of experimental practice: High-throughput computational screening in photocatalysis. Green Energy&Environment, 2024, 9(1): 1-6. doi: 10.1016/j.gee.2023.05.008

From the perspective of experimental practice: High-throughput computational screening in photocatalysis

doi: 10.1016/j.gee.2023.05.008
  • Photocatalysis, a critical strategy for harvesting sunlight to address energy demand and environmental concerns, is underpinned by the discovery of high-performance photocatalysts, thereby how to design photocatalysts is now generating widespread interest in boosting the conversion efficiency of solar energy. In the past decade, computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts. In this viewpoint, we started with introducing the challenges of photocatalysis from the view of experimental practice, especially the inefficiency of the traditional “trial and error” method. Subsequently, a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail. On the basis of the current experimental progress in photocatalysis, we also exemplified the various challenges associated with high-throughput computational screening strategies. Finally, we offered a preferred high-throughput computational screening procedure for photocatalysts from an experimental practice perspective (model construction and screening, standardized experiments, assessment and revision), with the aim of a better correlation of high-throughput simulations and experimental practices, motivating to search for better descriptors.

     

  • loading
  • [1]
    A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
    [2]
    Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6 (2012) 511-518.
    [3]
    J. Pan, Q. Yan, J. Semicond. 39 (2018) 071001.
    [4]
    M. Qureshi, K. Takanabe, Chem. Mater. 29 (2016) 158-167.
    [5]
    N.M. Nursam, X. Wang, R.A. Caruso, ACS Comb. Sci. 17 (2015) 548-569.
    [6]
    Y. Bi, P. Westerhoff, Chemosphere 223 (2019) 275-284.
    [7]
    S. Azadi, A. Karimi-Jashni, S. Javadpour, Process Saf. Environ. Prot. 117 (2018) 267-277.
    [8]
    S. Luo, T. Li, X. Wang, M. Faizan, L. Zhang, WIREs Comput. Mol. Sci. 11 (2021) e1489.
    [9]
    X. Zhang, Z. Zhang, D. Wu, X. Zhang, X. Zhao, Z. Zhou, Small Methods 2 (2018) 1700359.
    [10]
    B. Sa, R. Hu, Z. Zheng, R. Xiong, Y. Zhang, C. Wen, J. Zhou, Z. Sun, Chem. Mater. 34 (2022) 6687-6701.
    [11]
    Y. Yu, J. Zhou, Z. Guo, Z. Sun, ACS Appl. Mater. Interfaces 13 (2021) 28090-28097.
    [12]
    Z. Guo, J. Zhou, L. Zhu, Z. Sun, J. Mater. Chem. A 4 (2016) 11446-11452.
    [13]
    S. Ma, Z.-P. Liu, ACS Catal. 10 (2020) 13213-13226.
    [14]
    K. Sawada, T. Nakajima, APL Mater. 6 (2018) 101103.
    [15]
    A.K. Singh, R. Gorelik, T. Biswas, Annu. Rev. Condens. Matter Phys. 14 (2023) 237-259.
    [16]
    Y. Wu, P. Lazic, G. Hautier, K. Persson, G. Ceder, Energy Environ. Sci. 6 (2013) 157-168.
    [17]
    H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Chem. Rev. 122 (2022) 13478-13515.
    [18]
    H. Masood, C.Y. Toe, W.Y. Teoh, V. Sethu, R. Amal, ACS Catal. 9 (2019) 11774-11787.
    [19]
    Q. Tao, T. Lu, Y. Sheng, L. Li, W. Lu, M. Li, J. Energy Chem. 60 (2021) 351-359.
    [20]
    Z. Liu, G. Na, F. Tian, L. Yu, J. Li, L. Zhang, InfoMat 2 (2020) 879-904.
    [21]
    H. Mai, T.C. Le, T. Hisatomi, D. Chen, K. Domen, D.A. Winkler, R.A. Caruso, iScience 24 (2021) 103068.
    [22]
    J.R. Kitchin, Nat. Catal. 1 (2018) 230-232.
    [23]
    R. Kumar, A.K. Singh, npj Comput. Mater. 7 (2021) 197.
    [24]
    Y. Bai, L. Wilbraham, B.J. Slater, M.A. Zwijnenburg, R.S. Sprick, A.I. Cooper, J. Am. Chem. Soc. 141 (2019) 9063-9071.
    [25]
    C. Friedrich, M. Betzinger, M. Schlipf, S. Blugel, A. Schindlmayr, J. Phys.: Condens. Matter 24 (2012) 293201.
    [26]
    Y. Liang, S. Huang, R. Soklaski, L. Yang, Appl. Phys. Lett. 103 (2013) 042106.
    [27]
    A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, J. Phys. Chem. Lett. 6 (2015) 1087-1098.
    [28]
    S. Chen, D. Huang, P. Xu, W. Xue, L. Lei, M. Cheng, R. Wang, X. Liu, R. Deng, J. Mater. Chem. A 8 (2020) 2286-2322.
    [29]
    A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 31 (2019) 1807660.
    [30]
    W. Hou, S.B. Cronin, Adv. Funct. Mater. 23 (2013) 1612-1619.
    [31]
    J. Li, Z. Lou, B. Li, Chin. Chem. Lett. 33 (2022) 1154-1168.
    [32]
    K. Takanabe, ACS Catal. 7 (2017) 8006-8022.
    [33]
    Y. Zhang, X. Xu, ACS Omega 5 (2020) 15344-15352.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return