Volume 9 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Wang Liu, Yanfei Zhang, Mengya Sun, Xinpeng Zhao, Shenggang Li, Xinqing Chen, Liangshu Zhong, Lingzhao Kong. Li-promoted C3N4 catalyst for efficient isomerization of glucose into fructose at 50℃ in water. Green Energy&Environment, 2024, 9(9): 1419-1426. doi: 10.1016/j.gee.2023.04.005
Citation: Wang Liu, Yanfei Zhang, Mengya Sun, Xinpeng Zhao, Shenggang Li, Xinqing Chen, Liangshu Zhong, Lingzhao Kong. Li-promoted C3N4 catalyst for efficient isomerization of glucose into fructose at 50℃ in water. Green Energy&Environment, 2024, 9(9): 1419-1426. doi: 10.1016/j.gee.2023.04.005

Li-promoted C3N4 catalyst for efficient isomerization of glucose into fructose at 50℃ in water

doi: 10.1016/j.gee.2023.04.005
  • Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars, which is usually catalyzed by base or Lewis acid heterogeneous catalyst. However, high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis. Herein, a Li-promoted C3N4 catalyst was exploited which afforded an excellent fructose yield (40.3 wt%) and selectivity (99.5%) from glucose in water at 50 ℃, attributed to the formation of stable Li-N bond to strengthen the basic sites of catalysts. Furthermore, the so-formed N6-Li-H2O active site on Li-C3N4 catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose. The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.

     

  • loading
  • [1]
    J.C. Serrano-Ruiz, R. Luque, A. Sepulveda-Escribano, Chem. Soc. Rev. 40(2011)5266-5281.
    [2]
    Y. Zhang, H. Luo, L. Kong, X. Zhao, G. Miao, L. Zhu, S. Li, Y. Sun, Green Chem. 22(2020)7333-7336.
    [3]
    Z. Li, Y. Huang, X. Chi, D. Li, L. Zhong, X. Li, C. Liu, X. Peng, Green Energy Environ. 7(2022)1310-1317.
    [4]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. 8(2023)10-114.
    [5]
    Y.B. Li, H.Y. Guo, C.Q. Deng, J. Deng, Green Energy Environ. 7(2022)519-524.
    [6]
    R. Li, Q. Lin J. Ren, X. Yang, Y. Wang, L. Kong, Green Energy Environ., 2022, https://doi.org/10.1016/j.gee.2022.06.003.
    [7]
    J.J. Pacheco, M.E. Davis, Proc. Natl. Acad. Sci. U.S.A. 111(2014)8363-8367.
    [8]
    Z. Zhang, K. Deng, ACS Catal. 5(2015)6529-6544.
    [9]
    X. Zhao, Z. Zhou, H. Luo, Y. Zhang, W. Liu, G. Miao, L. Zhu, L. Kong, S. Li, Y. Sun, Green Chem. 23(2021)2634-2639.
    [10]
    J. Dai, Green Energy Environ. 6(2021)22-32.
    [11]
    S. Luan, W. Li, Z. Guo, W. Li, X. Hou, Y. Song, R. Wang, Q. Wang, Green Energy Environ. 7(2022)1033-1044.
    [12]
    H. Li, S. Yang, S. Saravanamurugan, A. Riisager, ACS Catal. 7(2017)3010-3029.
    [13]
    Y. Roman-Leshkov, M. Moliner, J.A. Labinger, M.E. Davis, Angew. Chem. Int. Ed. 49(2010)8954-8957.
    [14]
    R.J. Chimentao, S. Abello, F. Medina, J. Llorca, J.E. Sueiras, Y. Cesteros, P. Salagre, J. Catal. 252(2007)249-257.
    [15]
    S. Saravanamurugan, M. Paniagua, J.A. Melero, A. Riisager, J. Am. Chem. Soc. 135(2013)5246-5249.
    [16]
    C. Liu, J.M. Carraher, J.L. Swedberg, C.R. Herndon, C.N. Fleitman, J.-P. Tessonnier, ACS Catal. 4(2014)4295-4298.
    [17]
    M. Moliner, Y. Roman-Leshkov, M.E. Davis, Proc. Natl. Acad. Sci. U.S.A. 107(2010)6164-6168.
    [18]
    S. Park, D. Kwon, J.Y. Kang, J.C. Jung, Green Energy Environ. 4(2019)287-292.
    [19]
    X. Ye, X. Shi, J. Li, B. Jin, J. Cheng, Z. Ren, H. Zhong, L. Chen, X. Liu, F. Jin, T. Wang, Chem. Eng. J. 440(2022).
    [20]
    M. Ventura, J.a.A. Cecilia, E. Rodriguez-Castellon, M.E.E. Domine, Green Chem. 22(2020)1393-1405.
    [21]
    M. Ventura, J. Mazario, M.E. Domine, ChemCatChem 14(2022).
    [22]
    I. Delidovich, R. Palkovits, Catal. Sci. Technol. 4(2014)4322-4329.
    [23]
    J. Wang, W. Xu, J. Ren, X. Liu, G. Lu, Y. Wang, Green Chem. 13(2011)2678-2681.
    [24]
    J. Wang, H. Zhao, B.C. Zhu, S. Larter, S.W. Cao, J.G. Yu, M.G. Kibria, J.G. Hu, ACS Catal. 11(2021)12170-12178.
    [25]
    Z. Xu, Y. Yang, P. Yan, Z. Xia, X. Liu, Z.C. Zhang, RSC Adv. 10(2020)34732-34737.
    [26]
    Y.H. Zhang, Q.W. Pan, G.Q. Chai, M.R. Liang, G.P. Dong, Q.Y. Zhang, J.R. Qiu, Sci. Rep. 3(2013)1-8.
    [27]
    H.L. Gao, S.C. Yan, J.J. Wang, Y.A. Huang, P. Wang, Z.S. Li, Z.G. Zou, Phys. Chem. Chem. Phys. 15(2013)18077-18084.
    [28]
    M.S. Dresselhaus, G. Dresselhaus, Adv. Phy. 51(2002)1-186.
    [29]
    W. Zhang, Z. Zhang, S.H. Choi, W. Yang, Catal. Today 321(2019)67-73.
    [30]
    P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22(2012)4763-4770.
    [31]
    X. Yang, F. Qian, G. Zou, M. Li, J. Lu, Y. Li, M. Bao, Appl. Catal. B. 193(2016)22-35.
    [32]
    N. Jasni, A. Iqbal, M.N. Ahmad, H. Pauzi, M.H. Hussain International Symposium of Reaction Engineering, Catalysis and Sustainable Energy (RECaSE) Electr Network, 2021, pp 1154-1161.
    [33]
    B. Wu, R. Yang, L. Shi, T. Lin, X. Yu, M. Huang, K. Gong, F. Sun, Z. Jiang, S. Li, L. Zhong, Y. Sun, Chem. Commun. 56(2020)14677-14680.
    [34]
    G. Gu, K. Wang, N. Xiong, Z. Li, Z. Fan, S. Hu, X. Zou, Dalton Trans. 48(2019)5083-5089.
    [35]
    M.L.U. Rehman, Q. Hou, X. Bai, Y. Nie, H. Qian, T. Xia, R. Lai, G. Yu, M. Ju, ACS Sustain. Chem. Eng. 10(2022)1986-1993.
    [36]
    A. Tampierr, C. Russo, R. Marotta, M. Constanti, S. Contreras, F. Medina, Appl. Catal. B. 282(2021)119599-11610.
    [37]
    G.F. Mohsin, F.-J. Schmitt, C. Kanzler, J.D. Epping, S. Flemig, A. Hornemann, Food Chem. 245(2018)761-767.
    [38]
    H.S. Kimmel, J.T. Waldron, W.H. Snyder, J. Mol. Struct. 21(1974)445-456.
    [39]
    B.S. Ault, G.C. Pimentel, J. Phys. Chem. 79(1975)621-626.
    [40]
    X. Chen, Y.-K. Bai, C.-Z. Zhao, X. Shen, Q. Zhang, Angew. Chem. Int. Ed. 59(2020)11192-11195.
    [41]
    M. Trenary, H.F. Schaefer, P. Kollman, J. Am. Chem. Soc. 99(1977)3885-3886.
    [42]
    Y.M. Zhao, Y. Shirai, A.D. Slepkov, L. Cheng, L.B. Alemany, T. Sasaki, F.A. Hegmann, J.M. Tour, Chem. Eur. J. 11(2005)3643-3658.
    [43]
    A. Hashmi, T. Hu, J. Hong, J. Appl. Phys. 115(2014)124312.
    [44]
    M. Wu, Q. Wang, Q. Sun, P. Jena, J. Phy. Chem. C. 117(2013)6055-6059.
    [45]
    Q. Song, H. Ma, S. Xu, Y. Yang, L. Huang, Superlattices Microstruct. 137(2020)106340-106344.
    [46]
    G. Kresse, D. Joubert, Phy. Rev. B 59(1999)1758-1775.
    [47]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996)3865-3868.
    [48]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(2010)154104.
    [49]
    W. Tang, E. Sanville, G. Henkelman, J. Phy-Condens Mat. 21(2009)084204.
    [50]
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44(2011)1272-1276.
    [51]
    S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358(2015)15-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return