Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Liu Han, Cheng-wei Wang, Shan-shan Luo, Ying-tang Zhou, Bing Li, Ming Liu. Facet effects on bimetallic ZnSn hydroxide microcrystals for selective electrochemical CO2 reduction. Green Energy&Environment, 2024, 9(8): 1314-1320. doi: 10.1016/j.gee.2023.04.004
Citation: Liu Han, Cheng-wei Wang, Shan-shan Luo, Ying-tang Zhou, Bing Li, Ming Liu. Facet effects on bimetallic ZnSn hydroxide microcrystals for selective electrochemical CO2 reduction. Green Energy&Environment, 2024, 9(8): 1314-1320. doi: 10.1016/j.gee.2023.04.004

Facet effects on bimetallic ZnSn hydroxide microcrystals for selective electrochemical CO2 reduction

doi: 10.1016/j.gee.2023.04.004
  • Employing crystal facets to regulate the catalytic properties in electrocatalytic carbon dioxide reduction reaction (eCO2RR) has been well demonstrated on electrocatalysts containing single metals but rarely explored for bimetallic systems. Here, we synthesize ZnSn(OH)6 (ZSO) microcrystals (MCs) with distinct facets and investigate the facet effects in eCO2RR. Electrochemical studies and in situ Fourier Transform Infrared Spectroscopy (in situ-FTIR) reveal that ZSO MCs produce mainly C1 products of HCOOH and CO. The {111} facet of the ZSO MCS exhibits higher selectivity and faradaic efficiency (FE) than that of the {100} facet over a wide range of potentials (-0.9 V ∼ -1.3 V versus RHE). Density Functional Theory (DFT) calculations elucidate that the {111} facet is favorable to the adsorption/activation of CO2 molecules, the formation of intermediate in the rate-determining step, and the desorption of C1 products of CO and HCOOH molecules.

     

  • loading
  • [1]
    S. Chu, Y. Cui, N. Liu, Nat. Mater. 16 (2016) 16-22.
    [2]
    O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur, J. Van De Lagemaat, S.O. Kelley, E.H. Sargent, Joule 2 (2018) 825-832.
    [3]
    Y. Zhu, J. Wang, H. Chu, Y.-C. Chu, H.M. Chen, ACS Energy Lett. 5 (2020) 1281-1291.
    [4]
    W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Adv. Sci. 5 (2018) 1700275.
    [5]
    Y. Zhu, T.-R. Kuo, Y.-H. Li, M.-Y. Qi, G. Chen, J. Wang, Y.-J. Xu, H.M. Chen, Energ. Environ. Sci. 14 (2021) 1928-1958.
    [6]
    F. Liang, K. Zhang, L. Zhang, Y. Zhang, Y. Lei, X. Sun, Small 17 (2021) 2100323.
    [7]
    J. Resasco, A.T. Bell, Trends Chem. 2 (2020) 825-836.
    [8]
    S. Zhao, R. Jin, R. Jin, ACS Energy Lett. 3 (2018) 452-462.
    [9]
    Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem 3 (2017) 560-587.
    [10]
    X. Zhang, S.-X. Guo, K.A. Gandionco, A.M. Bond, J. Zhang, Mater. Today Adv. 7 (2020) 100074.
    [11]
    Z.Z. Wu, X.L. Zhang, Z.Z. Niu, F.Y. Gao, P.P. Yang, L.P. Chi, L. Shi, W.S. Wei, R. Liu, Z. Chen, S. Hu, X. Zheng, M.R. Gao, J. Am. Chem. Soc. 144 (2022) 259-269.
    [12]
    A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang, J.W. Ager, R. Buonsanti, Angew. Chem. Int. Ed. 55 (2016) 5789-5792.
    [13]
    M. Chu, C. Chen, Y. Wu, X. Yan, S. Jia, R. Feng, H. Wu, M. He, B. Han, Green Energy Environ. 7 (2022) 792-798.
    [14]
    Y. Zhai, P. Han, Q. Yun, Y. Ge, X. Zhang, Y. Chen, H. Zhang, eScience 2 (2022) 467-485.
    [15]
    A.R. Woldu, Nanoscale 12 (2020) 8626-8635.
    [16]
    H. Chen, J. Chen, J. Si, Y. Hou, Q. Zheng, B. Yang, Z. Li, L. Gao, L. Lei, Z. Wen, X. Feng, Chem. Sci. 11 (2020) 3952-3958.
    [17]
    H. Liu, Y. Su, S. Kuang, E.J.M. Hensen, S. Zhang, X. Ma, J. Mater. Chem. A 9 (2021) 7848-7856.
    [18]
    J. Xiao, M.R. Gao, S. Liu, J.L. Luo, ACS Appl. Mater. Inter. 12 (2020) 31431-31438.
    [19]
    Y. Gao, Q. Wu, X. Liang, Z. Wang, Z. Zheng, P. Wang, Y. Liu, Y. Dai, M.H. Whangbo, B. Huang, Adv. Sci. 7 (2020) 1902820.
    [20]
    G.L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W.A. Smith, R. Buonsanti, ACS Catal. 10 (2020) 4854-4862.
    [21]
    B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu, F. Peng, ACS Appl. Mater. Inter. 10 (2018) 20530-20539.
    [22]
    Y.-W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, J. Am. Chem. Soc. 141 (2019) 5261-5266.
    [23]
    K. Wang, D. Liu, P. Deng, L. Liu, S. Lu, Z. Sun, Y. Ma, Y. Wang, M. Li, B.Y. Xia, C. Xiao, S. Ding, Nano Energy 64 (2019) 103954.
    [24]
    K. Wang, D. Liu, L. Liu, J. Liu, X. Hu, P. Li, M. Li, A.S. Vasenko, C. Xiao, S. Ding, eScience 2 (2022) 518-528.
    [25]
    W. Zhang, Z. Yang, H. Wang, L. Lu, D. Liu, T. Li, S. Yan, H. Qin, T. Yu, Z. Zou, Appl. Catal. B Environ. 300 (2022) 120748.
    [26]
    L. Du, K. Gu, M. Zhu, J. Zhang, M. Zhang, Sensor. Actuat. B Chem. 288 (2019) 298-306.
    [27]
    R. Zhang, Y. He, L. Xu, J. Mater. Chem. A 2 (2014) 17979-17985.
    [28]
    H. Yu, R. Lai, H. Zhuang, Z. Zhang, X. Wang, CrystEngComm 14 (2012) 8530-8535.
    [29]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
    [30]
    Y. Yuan, K. Sheng, G. Zhuang, Q. Li, C. Dou, Q.J. Fang, W.W. Zhan, H. Gao, D. Sun, X. Han, Chem. Commun. 57 (2021) 8636-8639.
    [31]
    Y. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y.R. Lu, M. Peng, T.S. Chan, Y. Tan, Nano Lett. 21 (2021) 6907-6913.
    [32]
    Q. Yang, X. Liu, W. Peng, Y. Zhao, Z. Liu, M. Peng, Y.-R. Lu, T.-S. Chan, X. Xu, Y. Tan, J. Mater. Chem. A 9 (2021) 3044-3051.
    [33]
    Z. Chen, T. Fan, Y.-Q. Zhang, J. Xiao, M. Gao, N. Duan, J. Zhang, J. Li, Q. Liu, X. Yi, J.-L. Luo, Appl. Catal. B Environ. 261 (2020) 118243.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return