Turn off MathJax
Article Contents
Aqiang Chu, Meng Yang, Juanli Chen, Jinmin Zhao, Jing Fang, Zhensheng Yang, Hao Li. Biomass-enhanced Janus sponge-like hydrogel with salt resistance and high strength for efficient solar desalination. Green Energy&Environment. doi: 10.1016/j.gee.2023.04.003
Citation: Aqiang Chu, Meng Yang, Juanli Chen, Jinmin Zhao, Jing Fang, Zhensheng Yang, Hao Li. Biomass-enhanced Janus sponge-like hydrogel with salt resistance and high strength for efficient solar desalination. Green Energy&Environment. doi: 10.1016/j.gee.2023.04.003

Biomass-enhanced Janus sponge-like hydrogel with salt resistance and high strength for efficient solar desalination

doi: 10.1016/j.gee.2023.04.003
  • Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development of efficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates; however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including a high evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) with excellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA) hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneously formed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy and the modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m-2 h-1 under one sun illumination. Most importantly, owing to the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water (25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-cost raw materials make CPAS extremely promising for practical applications.

     

  • loading
  • [1]
    L. Zhu, J. Li, L. Zhong, L. Zhang, M. Zhou, H. Chen, Y. Hou, Y. Zheng, Nano Energy 100(2022) 107441.
    [2]
    J.R. Werber, C.O. Osuji, M. Elimelech, Nat. Rev. Mater. 1(2016) 16018.
    [3]
    Z. Yao, K. Yu, M. Pan, H. Xu, T. Zhao, Z. Jiang, Green Energy Environ. 7(2022) 492-499.
    [4]
    Z. Yu, R. Gu, Y. Tian, P. Xie, B. Jin, S. Cheng, Adv. Funct. Mater. 32(2022) 2108586.
    [5]
    X. Liu, F. Chen, Y. Li, H. Jiang, D.D. Mishra, F. Yu, Z. Chen, C. Hu, Y. Chen, L. Qu, W. Zheng, Adv. Mater. 34(2022) 2203137.
    [6]
    M.O. Mavukkandy, C.M. Chabib, I. Mustafa, A. Al Ghaferi, F. Almarzooqi, Desalination 472(2019) 114187.
    [7]
    D. Marathe, A. Singh, K. Raghunathan, P. Thawale, K. Kumari, Water Environ. Res. 93(2021) 2461-2504.
    [8]
    E. Jones, M. Qadir, M.T.H. Van Vliet, V. Smakhtin, S.-M. Kang, Sci. Total Environ. 657(2019) 1343-1356.
    [9]
    L. Zhao, Z. Yang, J. Wang, Y. Zhou, P. Cao, J. Zhang, P. Yuan, Y. Zhang, Q. Li, Chem. Eng. J. 451(2023) 138676.
    [10]
    J. Han, Z. Dong, L. Hao, J. Gong, Q. Zhao, Green Energy Environ. (2021). (DOI: 10.1016/j.gee.2021.03.010)
    [11]
    T. Gao, Y. Wang, X. Wu, P. Wu, X. Yang, Q. Li, Z. Zhang, D. Zhang, G. Owens, H. Xu, Sci. Bull. 67(2022) 1572-1580.
    [12]
    X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li, H. Xu, Adv. Sci. 8(2021) 2002501.
    [13]
    S.H. Zhan, X.B. Chen, B. Xu, L. Wang, L.M. Tong, R.B. Yu, N.L. Yang, D. Wang, Nano Today 47(2022) 101626.
    [14]
    X.L. Lin, P. Wang, R.T. Hong, X. Zhu, Y.C. Liu, X.J. Pan, X.Q. Qiu, Y.L. Qin, Adv. Funct. Mater. 32(2022) 2209262.
    [15]
    D.Q. Fan, Y. Lu, H. Zhang, H.L. Xu, C.H. Lu, Y.C. Tang, X.F. Yang, Appl. Catal. B-Environ. 295(2021) 120285.
    [16]
    A. Ni, P. Lin, X. Wang, D. Fu, S. Hua, D. Pei, S. Li, X. Han, Y. Xia, T. Zhang, Sustain. Mater. Techno. 32(2022) e00443.
    [17]
    X. Chen, N. Yang, Y. Wang, H. He, J. Wang, J. Wan, H. Jiang, B. Xu, L. Wang, R. Yu, L. Tong, L. Gu, Q. Xiong, C. Chen, S. Zhang, D. Wang, Adv. Mater. 34(2022) 2107400.
    [18]
    Y. Lu, X. Wang, D.Q. Fan, H. Yang, H.L. Xu, H.H. Min, X.F. Yang, Sustain. Mater. Techno. 25(2020) e00180.
    [19]
    B. Luo, J. Wen, H. Wang, S. Zheng, R. Liao, W. Chen, O. Mahian, X. Li, Energy Environ. Mater. 0(2022) 1-11.
    [20]
    P. Liu, Y.-B. Hu, X.-Y. Li, L. Xu, C. Chen, B. Yuan, M.-L. Fu, Angew. Chem. Int. Edit. 61(2022) e202208587.
    [21]
    F. Meng, Y. Zhang, S. Zhang, B. Ju, B. Tang, Green Energy Environ. (2021). (DOI: 10.1016/j.gee.2021.04.004)
    [22]
    W. Zhao, H. Gong, Y. Song, B. Li, N. Xu, X. Min, G. Liu, B. Zhu, L. Zhou, X.-X. Zhang, J. Zhu, Adv. Funct. Mater. 31(2021) 2100025.
    [23]
    X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Adv. Mater. 32(2020) 1908269.
    [24]
    X.Y. Zhou, Y.H. Guo, F. Zhao, W. Shi, G.H. Yu, Adv. Mater. 32(2020) 2007012
    [25]
    Y.H. Guo, X.Y. Zhou, F. Zhao, J. Bae, B. Rosenberger, G.H. Yu, ACS Nano 13(2019) 7913-7919.
    [26]
    Y.H. Guo, F. Zhao, X.Y. Zhou, Z.C. Chen, G.H. Yu, Nano Lett. 19(2019) 2530-2536.
    [27]
    X.Y. Zhou, F. Zhao, Y.H. Guo, B. Rosenberger, G.H. Yu, Sci. Adv. 5(2019) eaaw5484.
    [28]
    Y.H. Guo, H.Y. Lu, F. Zhao, X.Y. Zhou, W. Shi, G.H. Yu, Adv. Mater. 32(2020) 1907061.
    [29]
    F. Zhao, X.Y. Zhou, Y. Shi, X. Qian, M. Alexander, X.P. Zhao, S. Mendez, R.G. Yang, L.T. Qu, G.H. Yu, Nat. Nanotechnol 13(2018) 489-495.
    [30]
    X.Y. Zhou, F. Zhao, Y.H. Guo, Y. Zhang, G.H. Yu, Energ. Environ. Sci. 11(2018) 1985-1992.
    [31]
    A. Chu, M. Yang, H. Yang, X. Shi, J. Chen, J. Fang, Z. Wang, H. Li, ACS Appl. Mater. Interfaces 14(2022) 36116-36131.
    [32]
    Y. Wang, X. Sun, S. Tao, Environ. Sci. Technol. 54(2020) 16240-16248.
    [33]
    L. Zhao, P. Wang, J. Tian, J. Wang, L. Li, L. Xu, Y. Wang, X. Fei, Y. Li, Sci. Total Environ. 668(2019) 153-160.
    [34]
    X. Chen, S. He, M.M. Falinski, Y. Wang, T. Li, S. Zheng, D. Sun, J. Dai, Y. Bian, X. Zhu, J. Jiang, L. Hu, Z.J. Ren, Energ. Environ. Sci. 14(2021) 5347-5357.
    [35]
    X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, ACS Nano 15(2021) 12256-12266.
    [36]
    S. Li, F. Qiu, Y. Xia, D. Chen, X. Jiao, ACS Appl. Mater. Interfaces 14(2022) 19409-19418.
    [37]
    B. Wen, X. Zhang, Y. Yan, Y. Huang, S. Lin, Y. Zhu, Z. Wang, B. Zhou, S. Yang, J. Liu, Desalination 516(2021) 115228.
    [38]
    H. Yao, P. Zhang, C. Yang, Q. Liao, X. Hao, Y. Huang, M. Zhang, X. Wang, T. Lin, H. Cheng, J. Yuan, L. Qu, Energ. Environ. Sci. 14(2021) 5330-5338.
    [39]
    G.J. Zhao, W.J. Han, L.L. Dong, H.W. Fan, Z. Qu, J.H. Gu, H. Meng, Green Energy Environ. 7(2022) 1143-1160.
    [40]
    K. Wang, L. Xu, J. Wang, S. Zhang, Y. Wang, N. Yang, J. Du, D. Wang, Green Energy Environ. (2022). (DOI: 10.1016/j.gee.2022.01.003)
    [41]
    X. Zhou, Y. Guo, F. Zhao, G. Yu, Accounts Chem. Res. 52(2019) 3244-3253.
    [42]
    C. Ma, Q. Liu, Q. Peng, G. Yang, M. Jiang, L. Zong, J. Zhang, ACS Nano 15(2021) 19877-19887.
    [43]
    Y. Guo, L.S. De Vasconcelos, N. Manohar, J. Geng, K.P. Johnston, G. Yu, Angew. Chem. Int. Edit. 60(2021) 2-9.
    [44]
    P. Anukunwithaya, J.J. Koh, J.C. Chuan Yeo, S. Liu, X. Hou, N. Liu, C. He, J. Mater. Chem. A 10(2022) 15743-15751.
    [45]
    O. Duman, T.G. Polat, C.O. Diker, S. Tunc, Int. J. Biol. Macromol. 160(2020) 823-835.
    [46]
    Y. Tian, X. Liu, S. Xu, J. Li, A. Caratenuto, Y. Mu, Z. Wang, F. Chen, R. Yang, J. Liu, M.L. Minus, Y. Zheng, Desalination 523(2022) 115449.
    [47]
    S. Cao, J. Jiang, Q. Tian, C. Guo, X. Wang, K. Dai, Q. Xu, Green Energy Environ. 7(2022) 1006-1013.
    [48]
    H. Li, M. Yang, A.Q. Chu, H.D. Yang, J.L. Chen, Z.S. Yang, Y. Qian, J. Fang, ACS Appl. Polym. Mater. 4(2022) 6572-6581.
    [49]
    C.Y. Song, B.Y. Zhang, L. Hao, J.K. Min, N. Liu, R. Niu, J. Gong, T. Tang, Green Energy Environ. 7(2022) 411-422.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (247) PDF downloads(33) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return