Volume 9 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Sheng-Yan Yin, Ziyi Li, Yingcai Hu, Xiao Luo, Jishan Li. A novel metal-free porous covalent organic polymer for efficient room-temperature photocatalytic CO2 reduction via dry-reforming of methane. Green Energy&Environment, 2024, 9(9): 1407-1418. doi: 10.1016/j.gee.2023.03.003
Citation: Sheng-Yan Yin, Ziyi Li, Yingcai Hu, Xiao Luo, Jishan Li. A novel metal-free porous covalent organic polymer for efficient room-temperature photocatalytic CO2 reduction via dry-reforming of methane. Green Energy&Environment, 2024, 9(9): 1407-1418. doi: 10.1016/j.gee.2023.03.003

A novel metal-free porous covalent organic polymer for efficient room-temperature photocatalytic CO2 reduction via dry-reforming of methane

doi: 10.1016/j.gee.2023.03.003
  • At room temperature, the conversion of greenhouse gases into valuable chemicals using metal-free catalysts for dry reforming of methane (DRM) is quite promising and challenging. Herein, we developed a novel covalent organic porous polymer (TPE-COP) with rapid charge separation of the electron-hole pairs for DRM driven by visible light at room temperature, which can efficiently generate syngas (CO and H2). Both electron donor (tris(4-aminophenyl) amine, TAPA) and acceptor (4,4',4″,4'''-((1 E,1'E,1″E, 1'''E)-(ethene-1,1,2,2-tetrayltetrakis (benzene-4,1-diyl)) tetrakis (ethene-2,1-diyl)) tetrakis (1-(4-formylbenzyl) quinolin-1-ium), TPE-CHO) were existed in TPE-COP, in which the push-pull effect between them promoted the separation of photogenerated electron-hole, thus greatly improving the photocatalytic activity. Density functional theory (DFT) simulation results show that TPE-COP can form charge-separating species under light irradiation, leading to electrons accumulation in TPE-CHO unit and holes in TAPA, and thus efficiently initiating DRM. After 20 h illumination, the photocatalytic results show that the yields reach 1123.6 and 30.8 μmol g-1 for CO and H2, respectively, which are significantly higher than those of TPE-CHO small molecules. This excellent result is mainly due to the increase of specific surface area, the enhancement of light absorption capacity, and the improvement of photoelectron-generating efficiency after the formation of COP. Overall, this work contributes to understanding the advantages of COP materials for photocatalysis and fundamentally pushes metal-free catalysts into the door of DRM field.

     

  • loading
  • [1]
    J. Kawai, Mater. Des. 22(2001)111-122.
    [2]
    D.-H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F. Li, T. Agapie, J. C. Peters, O. Shekhah, M. Eddaoudi, E. H. Sargent, Nat. Mater. 19(2020)266-276.
    [3]
    R. K. Cheng, D. Littlejohn, P. A. Strakey, T. Sidwell, Proc. Combust. Inst. 32(2009)3001-3009.
    [4]
    M. A. Eastwood, QJM-Int J Med 114(2020)227-228.
    [5]
    L. Yang, I. Muhammad, Y. X. Chi, Y. X. Liu, G. Y. Wang, Y. Wang, X. B. Zhou, Sci. Total Environ. 853(2022)158370.
    [6]
    P. Kumar, T. A. Al-Attas, J. G. Hu, M. G. Kibria, ACS Nano 16(2022)8557.
    [7]
    D. Pakhare, J. Spivey, Chem. Soc. Rev. 43(2014)7813-7837.
    [8]
    F. Arcudi, L. Dordevic, B. Nagasing, S. I. Stupp, E. A. Weiss, J. Am. Chem. Soc. 143(2021)18131-18138.
    [9]
    S. Chang, Y. He, Y. Li, X. Cui, J. Cleaner Prod. 316(2021)128163.
    [10]
    M. Kosari, U. Anjum, S. Xi, A. M. H. Lim, A. M. Seayad, E. A. J. Raj, S. M. Kozlov, A. Borgna, H. C. Zeng, Adv. Funct. Mater. 31(2021)2102896.
    [11]
    N.-Y. Huang, H. He, S. Liu, H.-L. Zhu, Y.-J. Li, J. Xu, J.-R. Huang, X. Wang, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 143(2021)17424-17430.
    [12]
    S. Subramanian, Y. Song, D. Kim, C. T. Yavuz, ACS Energy Lett. 5(2020)1689-1700.
    [13]
    K. Mette, S. Kuhl, A. Tarasov, M. G. Willinger, J. Krohnert, S. Wrabetz, A. Trunschke, M. Scherzer, F. Girgsdies, H. Dudder, K. Kahler, K. F. Ortega, M. Muhler, R. Schlogl, M. Behrens, T. Lunkenbein, ACS Cataly. 6(2016)7238-7248.
    [14]
    T. T. P. Pham, K. S. Ro, L. Chen, D. Mahajan, T. J. Siang, U. P. M. Ashik, J.-i. Hayashi, D. Pham Minh, D.-V. N. Vo, Environ. Chem. Lett. 18(2020)1987-2019.
    [15]
    P. H. Tu, M. Sakamoto, K. Sasaki, Y. Shiratori, Int. J. Hydrogen Energy 24(2021)12636.
    [16]
    M. A. Vasiliades, C. M. Damaskinos, K. K. Kyprianou, M. Kollia, A. M. Efstathiou, Catal. Today 355(2020)788-803.
    [17]
    X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, J. Ye, Adv. Mater. 28(2016)6781-6803.
    [18]
    G. Ozin, Matter 5(2022)2594-2614.
    [19]
    A. Li, Q. Cao, G. Zhou, B. V. K. J. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem., Int. Ed. 58(2019)14549-14555.
    [20]
    N. T. Nguyen, M. Xia, P. N. Duchesne, L. Wang, C. Mao, A. A. Jelle, T. Yan, P. Li, Z.-H. Lu, G. A. Ozin, Nano Lett. 21(2021)1311-1319.
    [21]
    Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31(2019)1901997.
    [22]
    H. Kisch, Acc. Chem. Res. 50(2017)1002-1010.
    [23]
    S. Singh, R. Punia, K. K. Pant, P. Biswas, Chem. Eng. J. 433(2022)132709.
    [24]
    L.-X. Wang, Z.-Q. Wang, L. Wang, Z. Yang, Q. Zhu, Y. Liu, W. Fang, X.-Q. Gong, Y. Liu, X. Liu, F.-S. Xiao, J. Energy Chem. 65(2022)497-504.
    [25]
    L. Yuan, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Angew. Chem., Int. Ed. 60(2021)21150-21172.
    [26]
    J. Ma, S. Jing, Y. Wang, X. Liu, L.-Y. Gan, C. Wang, J.-Y. Dai, X. Han, X. Zhou, Adv. Energy Mater. 12(2022)2200253.
    [27]
    X.-L. Ye, Y.-Q. Huang, X.-Y. Tang, J. Xu, C. Peng, Y.-Z. Tan, J. Mater. Chem. A 7(2019)3066-3071.
    [28]
    Y.-C. Hao, L.-W. Chen, J. Li, Y. Guo, X. Su, M. Shu, Q. Zhang, W.-Y. Gao, S. Li, Z.-L. Yu, L. Gu, X. Feng, A.-X. Yin, R. Si, Y.-W. Zhang, B. Wang, C.-H. Yan, Nat Commun 12(2021)2682.
    [29]
    H. Patel, J. S. Hyun, J. Park, Nat Commun 4(2013)1357.
    [30]
    Z. Xiang, Y. Xue, D. Cao, L.,Huang, J.-F. Chen, L. Dai, Angew. Chem. Int. Ed. 53(2014)2433-2437.
    [31]
    B. C. Patra, S. Khilari, R. N. Manna, S. Mondal, D. Pradhan, A. Pradhan, A. Bhaumik, ACS Cataly. 7(2017)6120-6127.
    [32]
    J. Zheng, M. Wahiduzzaman, D. Barpaga, B. A. Trump, O. Y. Gutierrez, P. Thallapally, S. Ma, B. P. McGrail, G. Maurin, R. K. Motkuri, Angew. Chem., Int. Ed. 60(2021)18037-18043.
    [33]
    T. Skorjanc, D. Shetty, A. Trabolsi, Chem 7(2021)882-918.
    [34]
    S. Chen, P. Kong, H. Niu, H. Liu, X. Wang, J. Zhang, R. Li, Y. Guo, T. Peng, Chem. Eng. J. 431(2022)133357.
    [35]
    H. A. Patel, D. Ko, C. T. Yavuz, Chem. Mater. 26(2014)6729-6733.
    [36]
    S. Ravi, P. Puthiaraj, K. Yu, W.-S. Ahn, ACS Appl. Mater. Interfaces 11(2019)11488-11497.
    [37]
    D. Yang, S. Zuo, H. Yang, Y. Zhou, Q. Lu, X. Wang, Adv. Mater. 34(2022)2107293.
    [38]
    Y. Zhang, R.-L. Zhong, M. Lu, J.-H. Wang, C. Jiang, G.-K. Gao, L.-Z. Dong, Y. Chen, S.-L. Li, Y.-Q. Lan, ACS Cent. Sci. 7(2021)175-182.
    [39]
    A. Muhammad, M. Tahir, S. S. Al-Shahrani, A. M. Ali, S. U. Rather, Appl Surf Sci. 504(2020)144177.
    [40]
    B. Laszlo, K. Baan, E. Varga, A. Oszko, A. Erdohelyi, Z. Konya, J. Kiss, Appl Catal B-Environ. 199(2016)473-484.
    [41]
    Z. Li, Y. Mao, Y. Huang, D. Wei, M. Chen, Y. Huang, B. Jin, X. Luo, Z. Liang, Catal. Sci. Technol. 12(2022)2804-2818.
    [42]
    Y. Huang, K. Wang, T. Guo, J. Li, X. Wu, G. Zhang, Appl. Catal., B 277(2020)119232.
    [43]
    Z. Li, Q. Lin, M. Li, J. Cao, F. Liu, H. Pan, Z. Wang, S. Kawi, Renew Sust Energy Rev. 134(2020)110312.
    [44]
    X. Li, Y. Sun, J. Xu, Y. J. Shao, J. Wu, X. L. Xu, Y. Pan, H. X. Ju, J. F. Zhu, Y. Xie, Nat Energy. 4(2019)690-699.
    [45]
    B. Lei, W. Cui, P. Chen, L. Chen, J. Y. Li, F. Dong, ACS Catalysis. 12(2022)9670-9678.
    [46]
    N. Yin, Q. X. Bu, J. J. Wu, Y. Yang, X.B. Jiang, Q. H. Deng, D. Chen, Z. Tang, B. J. Zhou, Q. Zhong, J. Y. Shen, Chem Eng J. 439(2022)135684.
    [47]
    K. L. Huang, C. Y. Lv, C. H. Li, H. C. Bai, X. C. Meng, J Colloid Interf Sci. 636(2023)21-32.
    [48]
    F. He, B. C. Zhu, B. Cheng, J. G. Yu, W. K. Ho, W. Macyk, Appl Catal B:Environ. 272(2020)119006.
    [49]
    X. Wu, W. L. Zhang, J. Li, Q. J. Xiang, Z. Y. Liu, B. Liu, Angew. Chem. Int. Ed.(2022) e202213124.
    [50]
    X. Zu, Y. Zhao, X. Li, R. Chen, W. Shao, L. Li, P. Qiao, W. Yan, Y. Pan, Q. Xu, J. Zhu, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 62(2023) e202215247.
    [51]
    D. Zhou, J. Zhang, Z. X. Jin, T. M. Di, T. L. Wang, Chem Eng J. 450(2022)138108.
    [52]
    G. Tang, J. R. Li, Y. L. Lu, T. Song, S. H. Yin, G. J. Mao, B. Long, A. Ali, G. J. Deng, Chem Eng J. 451(2023)138744.
    [53]
    N. X. Li, R. M. Jiang, Y. Li, J. C. Zhou, Q. H. Ma, S. H. Shen, M. C. Liu, ACS Sustainable Chem. Eng. 7(2019)11455-11463.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (190) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return