Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Linshan Peng, Yufei Ren, Zhaoqiang Yin, Zhitong Wang, Xiangkun Wu, Lan Zhang. Current collectors’ effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 suspension electrodes for lithium slurry battery. Green Energy&Environment, 2024, 9(8): 1306-1313. doi: 10.1016/j.gee.2023.03.002
Citation: Linshan Peng, Yufei Ren, Zhaoqiang Yin, Zhitong Wang, Xiangkun Wu, Lan Zhang. Current collectors’ effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 suspension electrodes for lithium slurry battery. Green Energy&Environment, 2024, 9(8): 1306-1313. doi: 10.1016/j.gee.2023.03.002

Current collectors’ effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 suspension electrodes for lithium slurry battery

doi: 10.1016/j.gee.2023.03.002
  • Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell.

     

  • loading
  • [1]
    J. Lv, J. Xie, A.G.A. Mohamed, X. Zhang, Y. Wang, Chem. Soc. Rev. 51 (2022) 1511-1528.
    [2]
    E. Vollestad, R. Strandbakke, M. Tarach, D. Catalan-Martinez, M.L. Fontaine, D. Beeaff, D.R. Clark, J.M. Serra, T. Norby, Nat. Mater. 18 (2019) 752-759.
    [3]
    S. Arnold, L. Wang, V. Presser, Small 18 (2022) e2107913.
    [4]
    J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 54 (2015) 9776-9809.
    [5]
    L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Adv. Energy Mater. 1 (2011) 394-400.
    [6]
    L. Yu, F. Lin, W. Xiao, L. Xu, J. Xi, Chem. Eng. J. 356 (2019) 622-631.
    [7]
    J.W. Lim, D.G. Lee, Compos. Struct. 134 (2015) 483-492.
    [8]
    G.D. Charlton, S.M. Barbon, J.B. Gilroy, C.A. Dyker, J. Energy Chem. 34 (2019) 52-56.
    [9]
    R. Yan, Q. Wang, Adv. Mater. 30 (2018) e1802406.
    [10]
    M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.-M. Chiang, Adv. Energy Mater. 1 (2011) 511-516.
    [11]
    L. Zhang, X. Wu, W. Qian, H. Zhang, S. Zhang, Green Energy Environ. 6 (2021) 5-8.
    [12]
    Z. Qi, A.L. Liu, G.M. Koenig, Electrochim. Acta 228 (2017) 91-99.
    [13]
    J.J. Biendicho, C. Flox, L. Sanz, J.R. Morante, ChemSusChem 9 (2016) 1938-1944.
    [14]
    C. Gao, H. Liu, S. Bi, H. Li, C. Ma, Green Energy Environ. 6 (2021) 114-123.
    [15]
    P. Su, H. Zhang, L. Yang, C. Xing, S. Pan, W. Lu, S. Zhang, Chem. Eng. J. 433 (2022) 133203.
    [16]
    L. Madec, M. Youssry, M. Cerbelaud, P. Soudan, D. Guyomard, B. Lestriez, ChemPlusChem 80 (2015) 396-401.
    [17]
    T.-S. Wei, F.Y. Fan, A. Helal, K.C. Smith, G.H. Mckinley, Y.-M. Chiang, J.A. Lewis, Adv. Energy Mater. 5 (2015) 1500535.
    [18]
    Z. Siroma, T. Sato, T. Takeuchi, R. Nagai, A. Ota, T. Ioroi, J. Power Sources 316 (2016) 215-223.
    [19]
    M. Cerbelaud, B. Lestriez, R. Ferrando, A. Videcoq, M. Richard-Plouet, M. Teresa Caldes, D. Guyomard, Langmuir 30 (2014) 2660-2669.
    [20]
    K.C. Smith, V.E. Brunini, Y. Dong, Y.-M. Chiang, W.C. Carter, Electrochim. Acta 147 (2014) 460-469.
    [21]
    F.Y. Fan, W.H. Woodford, Z. Li, N. Baram, K.C. Smith, A. Helal, G.H. Mckinley, W.C. Carter, Y.M. Chiang, Nano Lett. 14 (2014) 2210-2218.
    [22]
    S. Hamelet, T. Tzedakis, J.B. Leriche, S. Sailler, D. Larcher, P.L. Taberna, P. Simon, J.M. Tarascon, J. Electrochem. Soc. 159 (2012) A1360-A1367.
    [23]
    H. Chen, Y. Liu, X. Zhang, Q. Lan, Y. Chu, Y. Li, Q. Wu, J. Power Sources 485 (2021) 229319.
    [24]
    K. Huang, P. Zhou, H. Chen, Energy Technol. 9 (2021) 2100371.
    [25]
    S. Roscher, R. Hoffmann, M. Prescher, P. Knittel, O. Ambacher, RSC Adv 9 (2019) 29305-29311.
    [26]
    I.A. Verzhbitskiy, M.D. Corato, A. Ruini, E. Molinari, A. Narita, Y. Hu, M.G. Schwab, M. Bruna, D. Yoon, S. Milana, X. Feng, K. Mullen, A.C. Ferrari, C. Casiraghi, D. Prezzi, Nano Lett. 16 (2016) 3442-3447.
    [27]
    Y. Zhao, B. Liu, Y. Yi, X. Lian, M. Wang, S. Li, X. Yang, J. Sun, Adv. Mater. 34 (2022) e2202902.
    [28]
    M.F. Don, P. Ekanayake, H. Nakajima, A.H. Mahadi, C.M. Lim, A. Atod, Ionics 25 (2019) 5585-5593.
    [29]
    M. Youssry, L. Madec, P. Soudan, M. Cerbelaud, D. Guyomard, B. Lestriez, Phys. Chem. Chem. Phys. 15 (2013) 14476-14486.
    [30]
    C. Busson, M.A. Blin, P. Guichard, P. Soudan, O. Crosnier, D. Guyomard, B. Lestriez, J. Power Sources 406 (2018) 7-17.
    [31]
    H. Nara, D. Mukoyama, R. Shimizu, T. Momma, T. Osaka, J. Power Sources 409 (2019) 139-147.
    [32]
    M. Jia, Y. Guo, H. Bian, Q. Zhang, L. Zhang, S. Zhang, J. Mater. Chem. A 8 (2020) 23844-23850.
    [33]
    H.-C. Wu, H.-C. Wu, E. Lee, N.-L. Wu, Electrochem. Commun. 12 (2010) 488-491.
    [34]
    H.-C. Wu, E. Lee, N.-L. Wu, T.R. Jow, J. Power Sources 197 (2012) 301-304.
    [35]
    L. Ku, Y. Cai, Y. Ma, H. Zheng, P. Liu, Z. Qiao, Q. Xie, L. Wang, D.-L. Peng, Chem. Eng. J. 370 (2019) 499-507.
    [36]
    Y. Liu, X. Fan, Z. Zhang, H.-H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, ACS Sustain. Chem. Eng. 7 (2018) 2225-2235.
    [37]
    Y.X. Yao, N. Yao, X.R. Zhou, Z.H. Li, X.Y. Yue, C. Yan, Q. Zhang, Adv. Mater. 34 (2022) 2206448.
    [38]
    X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao, S. Li, Q. Liu, J. Wu, Y. Fu, C. Han, F. Kang, B. Li, Adv. Mater. 33 (2021) e2007945.
    [39]
    X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Green Energy Environ. 4 (2019) 360-374.
    [40]
    S.W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn, P.T. Hammond, J. Am. Chem. Soc. 131 (2009) 671-679.
    [41]
    S. Jurng, Z.L. Brown, J. Kim, B.L. Lucht, Energy Environ. Sci. 11 (2018) 2600-2608.
    [42]
    N. Yao, S.Y. Sun, X. Chen, X.Q. Zhang, X. Shen, Z.H. Fu, R. Zhang, Q. Zhang, Angew. Chem. Int. Ed. Engl. 61 (2022) e202210859.
    [43]
    D. Wu, J. He, J. Liu, M. Wu, S. Qi, H. Wang, J. Huang, F. Li, D. Tang, J. Ma, Adv. Energy Mater. 12 (2022) 2200337.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (247) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return