Volume 9 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Wenjie Xiong, Xiaomin Zhang, Xingbang Hu, Youting Wu. Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α,β-unsaturated carboxylate esters under mild conditions. Green Energy&Environment, 2024, 9(9): 1440-1448. doi: 10.1016/j.gee.2023.03.001
Citation: Wenjie Xiong, Xiaomin Zhang, Xingbang Hu, Youting Wu. Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α,β-unsaturated carboxylate esters under mild conditions. Green Energy&Environment, 2024, 9(9): 1440-1448. doi: 10.1016/j.gee.2023.03.001

Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α,β-unsaturated carboxylate esters under mild conditions

doi: 10.1016/j.gee.2023.03.001
  • The deep-processing utility of pure hydrogen sulfide (H2S) is a significant direction in natural gas chemical industry. Herein, a brand-new strategy of H2S conversion by α,β-unsaturated carboxylate esters into thiols or thioethers using task-specific carboxylate ionic liquids (ILs) as catalyst has been developed, firstly accomplishing the phase separation of product and catalyst without introducing the third component. It can be considered as a cascade reaction in which the product selectivity can be controlled by adjusting the molar ratio of H2S to α,β-unsaturated carboxylate esters. Also, the effects of ILs with different anions and cations, intermittent feeding operations, as well as pressure-time kinetic behaviors on cascade reaction were investigated. Furthermore, the proposed interaction mechanism of H2S conversion using butyl acrylate catalyzed by [Emim][Ac] was revealed by DFT-based theoretical calculation. The approach enables the self-phase separation promotion of catalyst and product and achieves 99% quantitative conversion under mild conditions in the absence of solvent, making the entire process ecologically benign. High-efficiency reaction activity can still be maintained after ten cycles of the catalyst. Therefore, the good results, combined with its simplicity of operation and the high recyclability of the catalyst, make this green method environmentally friendly and cost-effective. It is anticipated that this self-separation method mediated by task-specific ILs will provide a feasible strategy for H2S utilization, which will guide its application on an industrial scale.

     

  • loading
  • [1]
    F. Li; A. Laaksonen; X. Zhang; X. Ji, Ind. Eng. Chem. Res. 61(2022)2643-2671.
    [2]
    X. Chen; G. Liu; W. Jin, Green Energy Environ. 6(2021)176-192.
    [3]
    X. Kan; G. Zhang; Y. Luo; F. Liu; Y. Zheng; Y. Xiao; Y. Cao; C. Au; S. Liang; L. Jiang, Green Energy Environ. 7(2022)983-995.
    [4]
    O.A. Habeeb; R. Kanthasamy; G.A.M. Ali; S. Sethupathi; R.B. Yunus, Rev. Chem. Eng. 34(2018)837-854.
    [5]
    A.D. Wiheeb; I.K. Shamsudin; M.A. Ahmad; M.N. Murat; J. Kim; M.R. Othman, Rev. Chem. Eng. 29(2013)449-470.
    [6]
    X. Dou; A. Veksha; W.P. Chan; W. Oh; Y.N. Liang; F. Teoh; D.K.B. Mohamed; A. Giannis; G. Lisak; T. Lim, Fuel 241(2019)1008-1018.
    [7]
    X. Wang; C. Xiao; M.H. Alabsi; P. Zheng; Z. Cao; J. Mei; Y. Shi; A. Duan; D. Gao; K. Huang; C. Xu, Green Energy Environ. 7(2022)324-333.
    [8]
    J. Feng; L. Jia; F. Wang; X. Sun; P. Ning; C. Wang; Y. Li; K. Li, Chem. Eng. J. 451(2023)138815.
    [9]
    L. Jiang; K. Mei; K. Chen; R. Dao; H. Li; C. Wang, Green Energy Environ. 7(2022)130-136.
    [10]
    R. Zhai; X. He; K. Mei; K. Chen; N. Cao; W. Lin; H. Li; C. Wang, ACS Sustainable Chem. Eng. 9(2021)3357-3362.
    [11]
    B. Yang; L. Bai; S. Zeng; S. Luo; L. Liu; J. Han; Y. Nie; X. Zhang; S. Zhang, Chem. Eng. J. 421(2021)127876.
    [12]
    G. Yu; C. Dai; B. Chen; Z. Lei; Z. Wei; K. Chen, AIChE J. 68(2022) e17575.
    [13]
    X. Zhang; W. Xiong; Z. Yin; Y. Chen; Y. Wu; X. Hu, Green Energy Environ. 7(2022)137-144.
    [14]
    S. Che; J. Guo; L. Gan; Q. Xiao; H. Li; Y. She; C. Wang, Green Energy Environ. 7(2022)1093-1101.
    [15]
    Y. Ji; Y. Hou; S. Ren; W. Wu, Sep. Purif. Technol. 258(2021)117997.
    [16]
    Y. Sun; S. Ren; Y. Hou; K. Zhang; Q. Zhang; W. Wu, ACS Sustainable Chem. Eng. 8(2020)3283-3290.
    [17]
    G. Cui; S. Lyu; F. Zhang; H. Wang; Z. Li; Y. Li; J. Wang, Ind. Eng. Chem. Res. 59(2020)21522-21529.
    [18]
    F. Jou; A.E. Mather, Int. J. Thermophys. 28(2007)490-495.
    [19]
    C.S. Pomelli; C. Chiappe; A. Vidis; G. Laurenczy; P.J. Dyson, J. Phys. Chem. B 111(2007)13014-13019.
    [20]
    K. Huang; X. Zhang; Y. Xu; Y. Wu; X. Hu; Y. Xu, AIChE J. 60(2014)4232-4240.
    [21]
    K. Huang; D. Cai; Y. Chen; Y. Wu; X. Hu; Z. Zhang, AIChE J. 59(2013)2227-2235.
    [22]
    L. Peng; M. Shi; X. Zhang; W. Xiong; X. Hu; Z. Tu; Y. Wu, Green Chem. Eng. 3(2022)259-266.
    [23]
    K. Huang; D. Cai; Y. Chen; Y. Wu; X. Hu; Z. Zhang, ChemPlusChem 79(2014)241-249.
    [24]
    K. Huang; X. Zhang; X. Hu; Y. Wu, AIChE J. 62(2016)4480-4490.
    [25]
    X. Zhang; W. Xiong; L. Peng; Y. Wu; X. Hu, AIChE J. 66(2020) e16936.
    [26]
    W. Xiong; M. Shi; L. Peng; X. Zhang; X. Hu; Y. Wu, Sep. Purif. Technol. 263(2021)118417.
    [27]
    K. Huang; X. Feng; X. Zhang; Y. Wu; X. Hu, Green Chem. 18(2016)1859-1863.
    [28]
    X. Zhang; W. Xiong; X. Hu; Y. Wu; M. Shi, Sci. Sin. Chim. 50(2020)594-602.
    [29]
    F. Liu; J. Yu; A.B. Qazi; L. Zhang; X. Liu, Environ. Sci. Technol. 55(2021)1419-1435.
    [30]
    Q. Zhang; Y.C. Hou; S.H. Ren; K. Zhang; W.Z. Wu, ACS Sustainable Chem. Eng. 7(2019)10931-10936.
    [31]
    X. Zhang; W. Xiong; M. Shi; Y. Wu; X. Hu, Chem. Eng. J. 408(2021)127866.
    [32]
    W. Xiong; M. Shi; X. Zhang; Z. Tu; X. Hu; Y. Wu, Green Chem. 23(2021)7969-7975.
    [33]
    W. Xiong; M. Shi; Y. Lu; X. Zhang; X. Hu; Z. Tu; Y. Wu, Chinese J. Chem. Eng. 50(2022)197-204.
    [34]
    P. Mishra; S. Kumari; S. Sen, J. Mol. Liq. 271(2018)580-588.
    [35]
    P. Luis; B. Van der Bruggen, J. Chem. Technol. Biotechnol. 89(2014)1288-1303.
    [36]
    J. Ji; W. Xiong; X. Zhang; L. Peng; M. Shi; Y. Wu; X. Hu, Chem. Eng. J. 440(2022)135902.
    [37]
    W. Xiong; Y. Lu; C. Li; J. Geng; Y. Wu; X. Hu, Green Chem. 25(2023)1898-1907.
    [38]
    X. Wang; S. Zeng; J. Wang; D. Shang; X. Zhang; J. Liu; Y. Zhang, Ind. Eng. Chem. Res. 57(2018)1284-1293.
    [39]
    J. Bao; J. He; Y. Zhang; Y. Yoneyama; N. Tsubaki, Angew. Chem. Int. Edit. 47(2008)353-356.
    [40]
    J. Sinha; S. Soars; C.N. Bowman, Macromolecules 54(2021)1693-1701.
    [41]
    A. Matic; H. Schlaad, Polym. Int. 67(2018)500-505.
    [42]
    D.M. Love; K. Kim; J.T. Goodrich; B.D. Fairbanks; B.T. Worrell; M.P. Stoykovich; C.B. Musgrave; C.N. Bowman, J. Org. Chem. 83(2018)2912-2919.
    [43]
    W. Silva; L. Evangelisti; J. van Wijngaarden, J. Phys. Chem. A 123(2019)9840-9849.
    [44]
    O. Daglar; B. Gungor; G. Guric; U.S. Gunay; G. Hizal; U. Tunca; H. Durmaz, J. Polym. Sci.58(2020)824-830.
    [45]
    M.S. Hill; D.J. Liptrot; C. Weetman, Chem. Soc. Rev. 45(2016)972-988.
    [46]
    M. Silva; H. Faustino; J.A.S. Coelho; M.V. Pinto; A. Fernandes; I. Companon; F. Corzana; G. Gasser; P.M.P. Gois, Angew. Chem. Int. Ed. 60(2021)10850-10857.
    [47]
    S. Lee; A. Ogawa; M. Kanno; H. Nakamoto; T. Yasuda; M. Watanabe, J. Am. Chem. Soc. 132(2010)9764-9773.
    [48]
    P. Mehra; M. Wilson; A. Paul, J. Phys. Chem. C 126(2022)10534-10545.
    [49]
    J. Lan; Y. Qu; P. Xu; J. Sun, Green Energy Environ. 6(2021)66-74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return