Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Changjian Yuan, Xianglei Liu, Xinrui Wang, Chao Song, Hangbin Zheng, Cheng Tian, Ke Gao, Nan Sun, Zhixing Jiang, Yimin Xuan, Yulong Ding. Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides. Green Energy&Environment, 2024, 9(8): 1290-1305. doi: 10.1016/j.gee.2023.02.009
Citation: Changjian Yuan, Xianglei Liu, Xinrui Wang, Chao Song, Hangbin Zheng, Cheng Tian, Ke Gao, Nan Sun, Zhixing Jiang, Yimin Xuan, Yulong Ding. Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides. Green Energy&Environment, 2024, 9(8): 1290-1305. doi: 10.1016/j.gee.2023.02.009

Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides

doi: 10.1016/j.gee.2023.02.009
  • Solar thermochemical energy storage based on calcium looping (CaL) process is a promising technology for next-generation concentrated solar power (CSP) systems. However, conventional calcium carbonate (CaCO3) pellets suffer from slow reaction kinetics, poor stability, and low solar absorptance. Here, we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability, mechanical strength, and solar absorptance via Al–Mn–Fe oxides. The energy storage density of proposed CaCO3 pellets is still as high as 1455 kJ kg-1 with only a slight decay rate of 4.91% over 100 cycles, which is higher than that of state-of-the-art pellets in the literature, in stark contrast to 69.9% of pure CaCO3 pellets over 35 cycles. Compared with pure CaCO3, the energy storage power density or decomposition rate is improved by 120% due to lower activation energy and promotion of Ca2+ diffusion by binary sulfate. The energy release or carbonation rate rises by 10% because of high O2- transport ability of molten binary sulfate. Benefiting from fast energy storage/release rate and high solar absorptance, thermochemical energy storage efficiency is enhanced by more than 50% under direct solar irradiation. This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate, high energy density, good cyclic stability, and high solar absorptance simultaneously.

     

  • loading
  • [1]
    A. Hussain; S.M. Arif; M. Aslam, Renew. Sust. Energ. Rev. 71 (2017) 12-28.
    [2]
    H. Wan; W. Ma; K. Zhou; Y. Cao; X. Liu; R. Ma, Green Energy Environ 7 (2022) 205-220.
    [3]
    L. Zeng; D. Wei; S. Toan; Z. Sun; Z. Sun, Green Energy Environ 7 (2022) 145-155.
    [4]
    H. Xu; L. Gong; S. Huang; M. Xu, Int. J. Heat Mass Transfer 76 (2014) 357-365.
    [5]
    T. Li; M. Wu; S. Wu; S. Xiang; J. Xu; J. Chao; T. Yan; T. Deng; R. Wang, Nano Energy 89 (2021).
    [6]
    R.G. Grim; Z. Huang; M.T. Guarnieri; J.R. Ferrell; L. Tao; J.A. Schaidle, Energy Environ. Sci. 13 (2020) 472-494.
    [7]
    M.D. Leonard; E.E. Michaelides; D.N. Michaelides, Renew. Energy 145 (2020) 951-962.
    [8]
    A. Shahsavari; M. Akbari, Renew. Sust. Energ. Rev. 90 (2018) 275-291.
    [9]
    D. Zhang; J. Wang; Y. Lin; Y. Si; C. Huang; J. Yang; B. Huang; W. Li, Renew. Sust. Energ. Rev. 76 (2017) 865-871.
    [10]
    L. Zhang; X. Wu; W. Qian; H. Zhang; S. Zhang, Green Energy Environ 6 (2021) 5-8.
    [11]
    J. Khan; M.H. Arsalan, Renew. Sust. Energ. Rev. 55 (2016) 414-425.
    [12]
    A. Palacios; C. Barreneche; M.E. Navarro; Y. Ding, Renew. Energy 156 (2020) 1244-1265.
    [13]
    M. Sarvghad; S. Delkasar Maher; D. Collard; M. Tassan; G. Will; T.A. Steinberg, Energy Stor. Mater. 14 (2018) 179-198.
    [14]
    Z. Ge; L. Wang; Y. Huang; Y. Ding; H. Chen, Sol. Energy Mater. Sol. Cells 236 (2022).
    [15]
    H. Shi; X. Zhang; K. Sundmacher; T. Zhou, Green Energy Environ 6 (2021) 392-404.
    [16]
    Q. Xu; X. Liu; Q. Luo; Y. Tian; C. Dang; H. Yao; C. Song; Y. Xuan; J. Zhao; Y. Ding, Energy Stor. Mater. 45 (2022) 786-795.
    [17]
    M.Q. Wu; S. Wu; Y.F. Cai; R.Z. Wang; T.X. Li, Energy Stor. Mater. 42 (2021) 380-417.
    [18]
    Z. Ge; F. Jiang; Q. Chen; L. Wang; Y. Ding; H. Chen, Chem. Eng. J. 444 (2022).
    [19]
    F. Wang; X. Shi; C. Zhang; Z. Cheng; X. Chen, Energy 191 (2020).
    [20]
    L. Andre; S. Abanades; G. Flamant, Renew. Sust. Energ. Rev. 64 (2016) 703-715.
    [21]
    A.J. Carrillo; J. Gonzalez-Aguilar; M. Romero; J.M. Coronado, Chem Rev 119 (2019) 4777-4816.
    [22]
    C. Prieto; P. Cooper; A.I. Fernandez; L.F. Cabeza, Renew. Sust. Energ. Rev. 60 (2016) 909-929.
    [23]
    J. Sunku Prasad; P. Muthukumar; F. Desai; D.N. Basu; M.M. Rahman, Appl. Energy 254 (2019).
    [24]
    M. Benitez-Guerrero; J.M. Valverde; P.E. Sanchez-Jimenez; A. Perejon; L.A. Perez-Maqueda, Sol Energy 153 (2017) 188-199.
    [25]
    C. Ortiz; J.M. Valverde; R. Chacartegui; L.A. Perez-Maqueda; P. Gimenez, Renew. Sust. Energ. Rev. 113 (2019).
    [26]
    Y. Yang; Y. Li; X. Yan; J. Zhao; C. Zhang, Energies 14 (2021).
    [27]
    A.N. Antzara; A. Arregi; E. Heracleous; A.A. Lemonidou, Chem. Eng. J. 333 (2018) 697-711.
    [28]
    Y.H. Huang; S. Garcia-Segura; M.D.G. De Luna; A.S. Sioson; M.C. Lu, Chemosphere 250 (2020) 126325.
    [29]
    S. Bai; J. Sun; L. Liu; Y. Da; Z. Zhou; R. Wang; Y. Guo; C. Zhao, Sol. Energy Mater. Sol. Cells 239 (2022).
    [30]
    X.K. Tian; S.C. Lin; J. Yan; C.Y. Zhao, Chem. Eng. J. 428 (2022).
    [31]
    M. Benitez-Guerrero; J.M. Valverde; P.E. Sanchez-Jimenez; A. Perejon; L.A. Perez-Maqueda, Chem. Eng. J. 334 (2018) 2343-2355.
    [32]
    A.A. Khosa; J. Yan; C.Y. Zhao, Energy 215 (2021).
    [33]
    Y. Zhou; Z. Zhou; L. Liu; X. She; R. Xu; J. Sun; M. Xu, Energy Fuels 35 (2021) 18778-18788.
    [34]
    T.X. Xu; X.K. Tian; A.A. Khosa; J. Yan; Q. Ye; C.Y. Zhao, Energy 236 (2021).
    [35]
    K. Wang; F. Gu; P.T. Clough; P. Zhao; E.J. Anthony, Chem. Eng. J. 390 (2020).
    [36]
    H. Zheng; C. Song; C. Bao; X. Liu; Y. Xuan; Y. Li; Y. Ding, Sol. Energy Mater. Sol. Cells 207 (2020).
    [37]
    B. Li; Y. Li; Y. Dou; Y. Wang; J. Zhao; T. Wang, Chem. Eng. J. 423 (2021).
    [38]
    L. Teng; Y. Xuan; Y. Da; X. Liu; Y. Ding, Energy Stor. Mater. 25 (2020) 836-845.
    [39]
    Y. Da; Y. Xuan; L. Teng; K. Zhang; X. Liu; Y. Ding, Chem. Eng. J. 382 (2020).
    [40]
    C. Song; X. Liu; H. Zheng; C. Bao; L. Teng; Y. Da; F. Jiang; C. Li; Y. Li; Y. Xuan; Y. Ding, Chem. Eng. J. 406 (2021).
    [41]
    H. Li; Y. Hu; H. Chen; M. Qu, Environ. Sci. Pollut. Res. Int. 26 (2019) 21972-21982.
    [42]
    J. Sun; Y. Sun; Y. Yang; X. Tong; W. Liu, Appl. Energy 242 (2019) 919-930.
    [43]
    C. Song; X. Liu; Y. Xuan; H. Zheng; K. Gao; L. Teng; Y. Da; C. Li; Y. Li; Y. Ding, Sci. China Technol. Sci. 64 (2021) 2142-2152.
    [44]
    L. Teng; Y. Xuan; X. Liu; Y. Ding, AIChE Journal 68 (2021).
    [45]
    X. Liu; C. Yuan; H. Zheng; C. Song; C. Tian; K. Gao; N. Sun; Z. Jiang; Y. Xuan; Y. Ding, Mater. Today Energy 30 (2022).
    [46]
    C. Salvador; D. Lu; E.J. Anthony; J.C. Abanades, Chem. Eng. J. 96 (2003) 187-195.
    [47]
    C. Shen; C. Luo; T. Luo; J. Xu; B. Lu; S. Liu; L. Zhang, ACS Omega 5 (2020) 17908-17917.
    [48]
    D. Choi; J. Shin; Y. Park, Chem. Eng. Sci. 230 (2021).
    [49]
    M.T. Dunstan; F. Donat; A.H. Bork; C.P. Grey; C.R. Muller, Chem Rev 121 (2021) 12681-12745.
    [50]
    A. Kurlov; A.M. Kierzkowska; T. Huthwelker; P.M. Abdala; C.R. Muller, Phys. Chem. Chem. Phys. 22 (2020) 24697-24703.
    [51]
    C.H. Lee; S.W. Choi; H.J. Yoon; H.J. Kwon; H.C. Lee; S.G. Jeon; K.B. Lee, Chem. Eng. J. 352 (2018) 103-109.
    [52]
    S. Vyazovkin; A.K. Burnham; J.M. Criado; L.A. Perez-Maqueda; C. Popescu; N. Sbirrazzuoli, Thermochimica Acta 520 (2011) 1-19.
    [53]
    R.L. Blaine; H.E. Kissinger, Thermochimica Acta 540 (2012) 1-6.
    [54]
    T. Ozawa, Bulletin of the Chemical Society of Japan 38 (1965) 1881-1886.
    [55]
    C. Popescu, Thermochimica Acta 285 (1996) 309-323.
    [56]
    Z. Bian; Y. Li; C. Sun; C. Zhang; Z. Wang; W. Liu, Industrial & Engineering Chemistry Research 59 (2020) 16741-16750.
    [57]
    C.-C. Li; U.-T. Wu; H.-P. Lin, J. Mater. Chem. A 2 (2014) 8252-8257.
    [58]
    Y. Hu; W. Liu; H. Chen; Z. Zhou; W. Wang; J. Sun; X. Yang; X. Li; M. Xu, Fuel 181 (2016) 199-206.
    [59]
    H.R. Radfarnia; A. Sayari, Chem. Eng. J. 262 (2015) 913-920.
    [60]
    Y. Hu; W. Liu; J. Sun; M. Li; X. Yang; Y. Zhang; M. Xu, Chem. Eng. J. 273 (2015) 333-343.
    [61]
    S. Pi; Z. Zhang; D. He; C. Qin; J. Ran, Asia-Pac. J. Chem. Eng. 14 (2019).
    [62]
    M. Zhao; Y. Song; G. Ji; X. Zhao, Energy Fuels 32 (2018) 5443-5452.
    [63]
    H. Lu; A. Khan; S.E. Pratsinis; P.G. Smirniotis, Energy Fuels 23 (2008) 1093-1100.
    [64]
    N. Nityashree; G.V. Manohara; M.M. Maroto-Valer; S. Garcia, ACS Appl. Mater. Interfaces 12 (2020) 33765-33774.
    [65]
    S.M. Hashemi; D. Karami; N. Mahinpey, Industrial & Engineering Chemistry Research 61 (2022) 5514-5526.
    [66]
    C. Luo; Y. Zheng; N. Ding; Q.L. Wu; C.G. Zheng, Chin. Chem. Lett. 22 (2011) 615-618.
    [67]
    X. Zhang; Z. Li; Y. Peng; W. Su; X. Sun; J. Li, Chem. Eng. J. 243 (2014) 297-304.
    [68]
    S.F. Wu; Y.Q. Zhu, Industrial & Engineering Chemistry Research 49 (2010) 2701-2706.
    [69]
    C. Luo; Y. Zheng; J. Yin; C. Qin; N. Ding; C. Zheng; B. Feng, Energy Fuels 27 (2013) 4824-4831.
    [70]
    Y. Hu; W. Liu; J. Sun; X. Yang; Z. Zhou; Y. Zhang; M. Xu, Energy Fuels 30 (2016) 6606-6613.
    [71]
    C.S. Martavaltzi; A.A. Lemonidou, Microporous Mesoporous Mater. 110 (2008) 119-127.
    [72]
    C. Qin; H. Du; L. Liu; J. Yin; B. Feng, Energy Fuels 28 (2013) 329-339.
    [73]
    S. Lu; S. Wu, Chem. Eng. J. 294 (2016) 22-29.
    [74]
    L. Huang; C. Xu; R. Ren; Q. Zheng; Z. Wang; B. Louis; Q. Wang, Sustain. Energy Fuels 2 (2018) 68-72.
    [75]
    R. Han; S. Xing; X. Wu; C. Pang; S. Lu; Y. Su; Q. Liu; C. Song; J. Gao, Renew. Energy 181 (2022) 267-277.
    [76]
    T. Wang; C.Y. Zhao; J. Yan, Sol. Energy Mater. Sol. Cells 215 (2020).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (214) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return