Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Jinkun Wang, Li Wang, Hong Xu, Li Sheng, Xiangming He. Perception of fundamental science to boost lithium metal anodes toward practical application. Green Energy&Environment, 2024, 9(3): 454-472. doi: 10.1016/j.gee.2023.02.008
Citation: Jinkun Wang, Li Wang, Hong Xu, Li Sheng, Xiangming He. Perception of fundamental science to boost lithium metal anodes toward practical application. Green Energy&Environment, 2024, 9(3): 454-472. doi: 10.1016/j.gee.2023.02.008

Perception of fundamental science to boost lithium metal anodes toward practical application

doi: 10.1016/j.gee.2023.02.008
  • As a key material for lithium metal batteries (LMBs), lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes. Although lithium anodes are regarded as the holy grail of lithium batteries, decades of exploration have not led to the successful commercialization of LMBs, due mainly to the challenges related to the inherent properties of lithium metal. To pave the way for further investigation, herein, a comprehensive review focusing on the fundamental science of lithium are provided. Firstly, the natures of lithium atoms and their isotopes, lithium clusters and lithium crystals are revisited, especially their structural and energetic properties. Subsequently, the electrochemical properties of lithium metal are reviewed. Numerous important concepts and scientific questions, including the electronic structure of lithium, influence of high pressure and low temperature on the properties of lithium, factors influencing lithium deposition, generation of lithium dendrites, and electrode potential of lithium in different electrolytes, are explained and analyzed in detail. Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed.

     

  • loading
  • [1]
    J.G. Ryan, Lithium, in: W.M. White (Ed.) Encyclopedia of Engineering Geology, Springer International Publishing, 2018, pp. 822-824.
    [2]
    P. Mahi, A.A.J. Smeets, D.J. Fray, J.A. Charles, JOM, 38 (1986) 20-26.
    [3]
    H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Energy Stor. Mater., 36 (2021) 147-170.
    [4]
    A. Nagy, J. Chem. Phys., 151 (2019) 014103.
    [5]
    D. Jin, J. Park, M.H. Ryou, Y.M. Lee, Adv. Mater. Interfaces, 7 (2020) 1902113.
    [6]
    X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Chem. Rev., 117 (2017) 10403-10473.
    [7]
    S. Deemyad, R. Zhang, Physica C, 548 (2018) 68-71.
    [8]
    W. Nortershauser, T. Neff, R. Sanchez, I. Sick, Phys. Rev. C, 84 (2011) 024307.
    [9]
    K.M. Rasch, L. Mitas, Phys. Rev. B, 92 (2015) 045122.
    [10]
    Fine structure, in: H. Metcalf, P. van der Straten (Eds.) Atoms and Molecules Interacting with Light: Atomic Physics for the Laser Era, Cambridge University Press, Cambridge, 2016, pp. 131-148.
    [11]
    S. Goudsmit, D.R. Inglis, Phys. Rev., 37 (1931) 328-329.
    [12]
    P. Guttinger, Eur. Phys. J. A, 64 (1930) 749-759.
    [13]
    H. Schuler, Z. Phys., 66 (1930) 431-435.
    [14]
    Z.-C. Yan, G.W.F. Drake, Phys. Rev. Lett., 79 (1997) 1646-1649.
    [15]
    H. Xian-Quan, H. Wen-Jiang, K. Chun-Yang, Chin. Phys., 11 (2002) 120-125.
    [16]
    G.J. Ackland, M. Dunuwille, M. Martinez-Canales, I. Loa, R. Zhang, S. Sinogeikin, W. Cai, S. Deemyad, Science, 356 (2017) 1254-1259.
    [17]
    E.L. Gromnitskaya, O.V. Stal’gorova, S.M. Stishov, J. Exp. Theor. Phys. Lett., 69 (1999) 38-43.
    [18]
    Z. Zhang, P.K. Sarswat, A. Murali, M.L. Free, J. Electrochem. Soc., 166 (2019) E145.
    [19]
    Y. Takami, S. Yanase, T. Oi, Z NATURFORSCH A, 68 (2013) 73-78.
    [20]
    Y. Takami, S. Yanase, T. Oi, Z NATURFORSCH A, 69 (2014) 97-103.
    [21]
    K. Okano, Y. Takami, S. Yanase, T. Oi, Energy Procedia, 71 (2015) 140-148.
    [22]
    S. Tan, J.-M. Kim, A. Corrao, S. Ghose, H. Zhong, N. Rui, X. Wang, S. Senanayake, B.J. Polzin, P. Khalifah, J. Xiao, J. Liu, K. Xu, X.-Q. Yang, X. Cao, E. Hu, Nat. Nanotechnol., (2022). https://doi.org/10.1038/s41565-022-01273-3.
    [23]
    X. Yan, J. Huang, L. Guo, C. Liu, S. Dong, Z. Peng, Energy Fuels, 35 (2021) 4743-4750.
    [24]
    J. Chou, Y. Zhao, X.-T. Li, W.-P. Wang, S.-J. Tan, Y.-H. Wang, J. Zhang, Y.-X. Yin, F. Wang, S. Xin, Y.-G. Guo, Angew. Chem. Int. Ed., 61 (2022) e202203137.
    [25]
    A. Popov, Mol. Phys., 117 (2018) 1833-1837.
    [26]
    D. Yepes, S.R. Kirk, S. Jenkins, A. Restrepo, J. Mol. Model., 18 (2012) 4171-4189.
    [27]
    T.B. Tai, P.V. Nhat, M.T. Nguyen, S. Li, D.A. Dixon, J. Phys. Chem. A, 115 (2011) 7673-7686.
    [28]
    A.N. Alexandrova, A.I. Boldyrev, J. Chem. Theory Comput., 1 (2005) 566-580.
    [29]
    D.B. Putungan, S.-H. Lin, Int. J. Mod Phys B, 32 (2018) 1850009.
    [30]
    B.G.A. Brito, L. Candido, J.N.T. Rabelo, G.Q. Hai, Chem. Phys. Lett., 616-617 (2014) 212-216.
    [31]
    A.K. Kushwaha, S.K. Nayak, Physica E, 97 (2018) 368-374.
    [32]
    R. Rousseau, D. Marx, Chem. Eur. J., 6 (2000) 2982-2993.
    [33]
    L. Cheng, J. Yang, J. Chem. Phys., 138 (2013) 141101.
    [34]
    B.G.A. Brito, G.-Q. Hai, L. Candido, J. Chem. Phys., 151 (2019) 014303.
    [35]
    P. Dugourd, D. Rayane, P. Labastie, B. Vezin, J. Chevaleyre, M. Broyer, Chem. Phys. Lett., 197 (1992) 433-437.
    [36]
    S. Quassowski, K. Hermann, Phys. Rev. B, 51 (1995) 2457-2466.
    [37]
    I. Boustani, W. Pewestorf, P. Fantucci, V. Bonaic-Koutecky, J. Koutecky, Phys. Rev. B, 35 (1987) 9437-9450.
    [38]
    R. Fournier, J. Bo Yi Cheng, A. Wong, J. Chem. Phys., 119 (2003) 9444-9454.
    [39]
    B.G.A. Brito, G.Q. Hai, L. Candido, J. Chem. Phys., 146 (2017) 174306.
    [40]
    B. Temelso, C.D. Sherrill, J. Chem. Phys., 122 (2005) 064315.
    [41]
    G. Sperber, Int. J. Quantum Chem., 7 (1973) 537-546.
    [42]
    F.R. Redfern, R.C. Chaney, P.G. Rudolf, Phys. Rev. B, 32 (1985) 5023-5031.
    [43]
    F.R. Redfern, R.C. Chaney, Phys. Rev. B, 33 (1986) 3823-3829.
    [44]
    P. Fuentealba, E. Chamorro, J.C. Santos, Understanding and using the electron localization function, in: A. Toro-Labbe (Ed.) Theoretical Aspects of Chemical Reactivity, 2007, pp. 57-85.
    [45]
    D. Nissenbaum, L. Spanu, C. Attaccalite, B. Barbiellini, A. Bansil, Phys. Rev. B, 79 (2009) 035416.
    [46]
    C.H. Wu, J. Phys. Chem., 87 (1983) 1534-1540.
    [47]
    C.H. Wu, J. Chem. Phys., 91 (1989) 546-551.
    [48]
    S.E. Wheeler, H.F. Schaefer, J. Chem. Phys., 122 (2005) 204328.
    [49]
    B. Vezin, P. Dugourd, D. Rayane, P. Labastie, M. Broyer, Chem. Phys. Lett., 206 (1993) 128-130.
    [50]
    F. Spiegelman, F. Calvo, Collect. Czech. Chem. Commun., 72 (2007) 278-295.
    [51]
    P. Ballone, P. Milani, Phys. Rev. B, 45 (1992) 11222-11225.
    [52]
    H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar, Appl. Phys. Lett., 99 (2011) 123113.
    [53]
    K. Naoi, N. Ogihara, Y. Igarashi, A. Kamakura, Y. Kusachi, K. Utsugi, J. Electrochem. Soc., 152 (2005) A1047.
    [54]
    L.M. Bloi, F. Hippauf, T. Boenke, M. Rauche, S. Paasch, K. Schutjajew, J. Pampel, F. Schwotzer, S. Dorfler, H. Althues, M. Oschatz, E. Brunner, S. Kaskel, Carbon, 188 (2022) 325-335.
    [55]
    X. Fan, W.T. Zheng, J.-L. Kuo, D.J. Singh, ACS Appl. Mater. Interfaces, 5 (2013) 7793-7797.
    [56]
    R. Tian, H. Duan, Y. Guo, H. Li, H. Liu, Small, 14 (2018) 1802226.
    [57]
    L. Kumar, H.J. Monkhorst, F.E. Harris, Phys. Rev. B, 9 (1974) 4084-4095.
    [58]
    A. Julg, M. Benard, M. Bourg, M. Gillet, E. Gillet, Phys. Rev. B, 9 (1974) 3248-3256.
    [59]
    P. Staikov, A. Kara, T.S. Rahman, J. Phys.: Condens. Matter, 9 (1997) 2135-2148.
    [60]
    A.W. Overhauser, Phys. Rev. Lett., 53 (1984) 64-65.
    [61]
    A.D. Zdetsis, Phys. Rev. B, 34 (1986) 7666-7669.
    [62]
    R. Berliner, S.A. Werner, Phys. Rev. B, 34 (1986) 3586-3603.
    [63]
    N.W. Ashcroft, Phys. Rev. B, 39 (1989) 10552-10559.
    [64]
    K. Doll, N.M. Harrison, V.R. Saunders, J. Phys.: Condens. Matter, 11 (1999) 5007-5019.
    [65]
    F. Nogueira, C. Fiolhais, J.P. Perdew, Phys. Rev. B, 59 (1999) 2570-2578.
    [66]
    S.F. Elatresh, W. Cai, N.W. Ashcroft, R. Hoffmann, S. Deemyad, S.A. Bonev, Proc. Natl. Acad. Sci. U.S.A., 114 (2017) 5389-5394.
    [67]
    C.L. Guillaume, E. Gregoryanz, O. Degtyareva, M.I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S.V. Sinogeikin, H.K. Mao, Nat. Phys., 7 (2011) 211-214.
    [68]
    T. Matsuoka, M. Sakata, Y. Nakamoto, K. Takahama, K. Ichimaru, K. Mukai, K. Ohta, N. Hirao, Y. Ohishi, K. Shimizu, Phys. Rev. B, 89 (2014) 144103.
    [69]
    A.M.J. Schaeffer, W.B. Talmadge, S.R. Temple, S. Deemyad, Phys. Rev. Lett., 109 (2012) 185702.
    [70]
    M. Frost, J.B. Kim, E.E. McBride, J.R. Peterson, J.S. Smith, P. Sun, S.H. Glenzer, Phys. Rev. Lett., 123 (2019) 065701.
    [71]
    M. Hutcheon, R. Needs, Phys. Rev. B, 99 (2019) 014111.
    [72]
    A.Y. Liu, A.A. Quong, J.K. Freericks, E.J. Nicol, E.C. Jones, Phys. Rev. B, 59 (1999) 4028-4035.
    [73]
    P.M. O'Keefe, W.A. Goddard, Phys. Rev., 180 (1969) 747-749.
    [74]
    N.D. Lang, W. Kohn, Phys. Rev. B, 1 (1970) 4555-4568.
    [75]
    M. Ono, J. Phys. Soc. Jpn., 34 (1973) 26.
    [76]
    I.Y. Sklyadneva, G.G. Rusina, E.V. Chulkov, Phys. Rev. B, 65 (2002) 235419.
    [77]
    R.B. Wilson, D.M. Riffe, J. Phys.: Condens. Matter, 24 (2012) 335401.
    [78]
    T.C. Chi, J. Phys. Chem. Ref. Data, 8 (1979) 339-438.
    [79]
    J.M. Ziman, Philos. Mag., 6 (1961) 1013-1034.
    [80]
    A.M. Rosenfeld, M.J. Stott, Phys. Rev. B, 42 (1990) 3406-3414.
    [81]
    S. Korkmaz, S.D. Korkmaz, Comput. Mater. Sci., 37 (2006) 618-623.
    [82]
    B. Silvi, Struct. Chem., 28 (2017) 1389-1397.
    [83]
    S.A. Mack, S.M. Griffin, J.B. Neaton, Proc. Natl. Acad. Sci. U.S.A., 116 (2019) 9197-9201.
    [84]
    J.B. Neaton, N.W. Ashcroft, Nature, 400 (1999) 141-144.
    [85]
    T. Matsuoka, K. Shimizu, Nature, 458 (2009) 186-189.
    [86]
    I.I. Naumov, R.J. Hemley, R. Hoffmann, N.W. Ashcroft, J. Chem. Phys., 143 (2015) 064702.
    [87]
    M. Marques, M.I. McMahon, E. Gregoryanz, M. Hanfland, C.L. Guillaume, C.J. Pickard, G.J. Ackland, R.J. Nelmes, Phys. Rev. Lett., 106 (2011) 095502.
    [88]
    F.A. Gorelli, S.F. Elatresh, C.L. Guillaume, M. Marques, G.J. Ackland, M. Santoro, S.A. Bonev, E. Gregoryanz, Phys. Rev. Lett., 108 (2012) 055501.
    [89]
    S.F. Elatresh, S.A. Bonev, E. Gregoryanz, N.W. Ashcroft, Phys. Rev. B, 94 (2016) 104107.
    [90]
    L.D. Gelb, T.N. Carnahan, Chem. Phys. Lett., 417 (2006) 283-287.
    [91]
    D. Stroud, N.W. Ashcroft, Phys. Rev. B, 5 (1972) 371-383.
    [92]
    V.V. Struzhkin, M.I. Eremets, W. Gan, H.K. Mao, R.J. Hemley, Science, 298 (2002) 1213-1215.
    [93]
    K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, K. Amaya, Nature, 419 (2002) 597-599.
    [94]
    A. Cottrell, An Introduction to Metallurgy, 2nd ed., Maney Publishing, London, 1997.
    [95]
    A. Kahn, Mater. Horizons, 3 (2016) 7-10.
    [96]
    S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem., 209 (1986) 417-428.
    [97]
    P.A. Anderson, Phys. Rev., 75 (1949) 1205-1207.
    [98]
    B.B. Alchagirov, L.K. Afaunova, F.F. Dyshekova, R.K. Arkhestov, Tech. Phys., 60 (2015) 292-299.
    [99]
    A. Etxebarria, S.L. Koch, O. Bondarchuk, S. Passerini, G. Teobaldi, M.A. Munoz-Marquez, Adv. Energy Mater., 10 (2020) 2000520.
    [100]
    N.D. Lang, W. Kohn, Phys. Rev. B, 3 (1971) 1215-1223.
    [101]
    K. Kokko, P.T. Salo, R. Laihia, K. Mansikka, Surf. Sci., 348 (1996) 168-174.
    [102]
    A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett., 17 (2017) 1132-1139.
    [103]
    P. Biswal, S. Stalin, A. Kludze, S. Choudhury, L.A. Archer, Nano Lett., 19 (2019) 8191-8200.
    [104]
    Y. Huang, X. Wu, L. Nie, S. Chen, Z. Sun, Y. He, W. Liu, Solid State Ionics, 345 (2020) 115171.
    [105]
    W. Chang, J.H. Park, N.S. Dutta, C.B. Arnold, D.A. Steingart, Chem. Mater., 32 (2020) 2803-2814.
    [106]
    X.-B. Cheng, T.-Z. Hou, R. Zhang, H.-J. Peng, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Adv. Mater., 28 (2016) 2888-2895.
    [107]
    S. Guo, N. Piao, L. Wang, H. Xu, G. Tian, J. Li, X. He, ACS Appl. Energy Mater., 3 (2020) 7191-7199.
    [108]
    S. Guo, L. Wang, Y. Jin, N. Piao, Z. Chen, G. Tian, J. Li, C. Zhao, X. He, Nano Converg., 7 (2020) 21.
    [109]
    N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, J. Jiang, K. Xu, M.A. Schroeder, X. He, C. Wang, ACS Energy Lett., 6 (2021) 1839-1848.
    [110]
    N. Piao, X. Ji, H. Xu, X. Fan, L. Chen, S. Liu, M.N. Garaga, S.G. Greenbaum, L. Wang, C. Wang, X. He, Adv. Energy Mater., 10 (2020) 1903568.
    [111]
    Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, Adv. Mater., (2023) 2206009.
    [112]
    A.A. Rulev, A.V. Sergeev, L.V. Yashina, T. Jacob, D.M. Itkis, ChemElectroChem, 6 (2019) 1324-1328.
    [113]
    X. Wang, Y. He, S. Tu, L. Fu, Z. Chen, S. Liu, Z. Cai, L. Wang, X. He, Y. Sun, Energy Stor. Mater., 49 (2022) 135-143.
    [114]
    Y. He, M. Zhang, A. Wang, B. Zhang, H. Pham, Q. Hu, L. Sheng, H. Xu, L. Wang, J. Park, X. He, ACS Appl. Mater. Interfaces, 14 (2022) 33952-33959.
    [115]
    S.T. Oyakhire, W. Huang, H. Wang, D.T. Boyle, J.R. Schneider, C. de Paula, Y. Wu, Y. Cui, S.F. Bent, Adv. Energy Mater., 10 (2020) 2002736.
    [116]
    S.T. Oyakhire, W. Zhang, A. Shin, R. Xu, D.T. Boyle, Z. Yu, Y. Ye, Y. Yang, J.A. Raiford, W. Huang, J.R. Schneider, Y. Cui, S.F. Bent, Nat. Commun., 13 (2022) 3986.
    [117]
    S.W. Boettcher, S.Z. Oener, M.C. Lonergan, Y. Surendranath, S. Ardo, C. Brozek, P.A. Kempler, ACS Energy Lett., 6 (2021) 261-266.
    [118]
    S. Ko, T. Obukata, T. Shimada, N. Takenaka, M. Nakayama, A. Yamada, Y. Yamada, Nat. Energy, 7 (2022) 1217-1224.
    [119]
    Y. Xiao, R. Xu, C. Yan, J.-Q. Huang, Q. Zhang, M. Ouyang, Adv. Funct. Mater., 32 (2021) 2108449.
    [120]
    J. Wang, J. Liu, L. Wang, H. Xu, Y. Yang, L. Sheng, X. He, J. Power Sources, 546 (2022) 231953.
    [121]
    D.R. Cogley, J.N. Butler, J. Phys. Chem., 72 (1968) 1017-1020.
    [122]
    R. Huston, J.N. Butler, J. Phys. Chem., 72 (1968) 4263-4264.
    [123]
    W. Haynes, CRC Handbook of Chemistry and Physics, 96th ed., CRC Press, Boca Raton, 2015.
    [124]
    J. Speight, Lange's Handbook of Chemistry, 17th ed., McGraw Hill, New York, 2016.
    [125]
    D.W. Smith, J. Chem. Educ., 54 (1977) 540.
    [126]
    W.M. Latimer, R.M. Buffington, J. Am. Chem. Soc., 48 (1926) 2297-2305.
    [127]
    N. Mozhzhukhina, E. Calvo, J. Electrochem. Soc., 164 (2017) A2295-A2297.
    [128]
    N. Mozhzhukhina, M.P. Longinotti, H.R. Corti, E.J. Calvo, Electrochim. Acta, 154 (2015) 456-461.
    [129]
    O. Borodin, Molecular Modeling of Electrolytes, in: T.R. Jow, K. Xu, O. Borodin, M. Ue (Eds.) Electrolytes for Lithium and Lithium-Ion Batteries, Springer New York, New York, 2014, pp. 371-401.
    [130]
    B. Zhang, Y. Jia, Y. Zhou, S. Ye, T. Yan, X.-P. Gao, Chem. Commun., 58 (2022) 4747-4750.
    [131]
    R.R. Gagne, C.A. Koval, G.C. Lisensky, Inorg. Chem., 19 (1980) 2854-2855.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return