Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Shijie Yu, Qinghai Li, Yanguo Zhang, Hui Zhou. New possibility for PET plastic recycling by a tailored hydrolytic enzyme. Green Energy&Environment, 2024, 9(2): 163-165. doi: 10.1016/j.gee.2023.02.007
Citation: Shijie Yu, Qinghai Li, Yanguo Zhang, Hui Zhou. New possibility for PET plastic recycling by a tailored hydrolytic enzyme. Green Energy&Environment, 2024, 9(2): 163-165. doi: 10.1016/j.gee.2023.02.007

New possibility for PET plastic recycling by a tailored hydrolytic enzyme

doi: 10.1016/j.gee.2023.02.007
  • Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology. Poly (ethylene terephthalate) (PET) is one of the most produced plastics in the world. Enzymatic decomposition holds the promise of recovering monomers from PET plastic, and the monomers can be used to regenerate new PET products. However, there are still limitations in the activity and thermal stability of the existing PET hydrolases. The recent study by Lu et al. introduced a novel PET hydrolase via machine learning-aided engineering. The obtained PET hydrolase showed excellent activity and thermal stability in the hydrolysis of PET and is capable of directly degrading large amounts of postconsumer PET products. This approach provides an effective method for recycling PET waste and is expected to improve the current state of plastic pollution worldwide.

     

  • loading
  • [1]
    D.K.A. Barnes, F. Galgani, R.C. Thompson, M. Barlaz, Philosophical Transactions of the Royal Society B-Biological Sciences 364 (2009) 1985-1998.
    [2]
    J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Science 347 (2015) 768-771.
    [3]
    L. Dai, N. Zhou, Y. Lv, Y. Cheng, Y. Wang, Y. Liu, K. Cobb, P. Chen, H. Lei, R. Ruan, Prog. Energy Combust. Sci. 93 (2022) 101021.
    [4]
    R. Geyer, J.R. Jambeck, K.L. Law, Sci. Adv. 3 (2017) e1700782.
    [5]
    L.-X. Yun, H. Wu, Z.-G. Shen, J.-W. Fu, J.-X. Wang, ACS Sustain. Chem. Eng. 10 (2022) 5278-5287.
    [6]
    R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. Mcgonigle, A.E. Russell, Science 304 (2004) 838-838.
    [7]
    R. Xu, C. Yin, J. You, J. Zhang, Q. Mi, J. Wu, J. Zhang, Green Energy Environ. (2022). https://doi.org/10.1016/j.gee.2022.10.009.
    [8]
    Z. Gao, B. Ma, S. Chen, J. Tian, C. Zhao, Nat. Commun. 13 (2022) 3343.
    [9]
    X. Han, W. Liu, J.-W. Huang, J. Ma, Y. Zheng, T.-P. Ko, L. Xu, Y.-S. Cheng, C.-C. Chen, R.-T. Guo, Nat. Commun. 8 (2017) 2106.
    [10]
    L.D. Ellis, N.A. Rorrer, K.P. Sullivan, M. Otto, J.E. Mcgeehan, Y. Roman-Leshkov, N. Wierckx, G.T. Beckham, Nat. Catal. 4 (2021) 539-556.
    [11]
    J.K. Ru, Y.X. Huo, Y. Yang, Frontiers in Microbiology 11 (2020) 442.
    [12]
    I. Taniguchi, S. Yoshida, K. Hiraga, K. Miyamoto, Y. Kimura, K. Oda, ACS Catal. 9 (2019) 4089-4105.
    [13]
    H. Inderthal, S.L. Tai, S.T.L. Harrison, Trends Biotechnol. 39 (2021) 12-23.
    [14]
    C.C. Chen, L.H. Dai, L.X. Ma, R.T. Guo, Nat. Rev. Chem. 4 (2020) 114-126.
    [15]
    C.C. Chen, X. Han, X. Li, P.C. Jiang, D. Niu, L.X. Ma, W.D. Liu, S.Y. Li, Y.Y. Qu, H.B. Hu, J. Min, Y. Yang, L.L. Zhang, W. Zeng, J.W. Huang, L.H. Dai, R.T. Guo, Nat. Catal. 4 (2021) 425-430.
    [16]
    S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura, K. Oda, Science 351 (2016) 1196-1199.
    [17]
    H. Lu, D.J. Diaz, N.J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D.J. Acosta, B.R. Alexander, H.O. Cole, Y. Zhang, N.A. Lynd, A.D. Ellington, H.S. Alper, Nature 604 (2022) 662-667.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (185) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return