Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Da-Ming Gao, Xun Zhang, Haichao Liu, Hidemi Fujino, Tingzhou Lei, Fuan Sun, Jie Zhu, Taoli Huhe. Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History, challenges, and prospects. Green Energy&Environment, 2024, 9(3): 435-453. doi: 10.1016/j.gee.2023.02.003
Citation: Da-Ming Gao, Xun Zhang, Haichao Liu, Hidemi Fujino, Tingzhou Lei, Fuan Sun, Jie Zhu, Taoli Huhe. Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History, challenges, and prospects. Green Energy&Environment, 2024, 9(3): 435-453. doi: 10.1016/j.gee.2023.02.003

Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History, challenges, and prospects

doi: 10.1016/j.gee.2023.02.003
  • The transformation of aldose to ketose or common sugars into rare saccharides, including rare ketoses and aldoses, is of great value and interest to the food industry and for saccharidic biomass utilization, medicine, and the synthesis of drugs. Nowadays, high-fructose corn syrup (HFCS) is industrially produced in more than 10 million tons annually using immobilized glucose isomerase. Some low-calorie saccharides such as tagatose and psicose, which are becoming popular sweeteners, have also been produced on a pilot scale in order to replace sucrose and HFCS. However, current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value, rare sugars. Considering the specific reaction properties of saccharides and catalysts, since the pioneering discovery by Fischer, various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways, improve the reaction efficiency, and to potentially produce commercial products. In this review, we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.

     

  • loading
  • [1]
    Y. Wang, H. M. Carder, A. E. Wendlandt, Nature 578 (2020) 403-408.
    [2]
    E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz, C. A. Gartner, J. A. Dumesic, Science 322 (2008) 417-421.
    [3]
    R. Yang, J. Xu, L. Xu, X. Sun, Q. Chen, Y. Zhao, R. Peng, Z. Liu, ACS Nano 12 (2018) 5121-5129.
    [4]
    S. R. Sanapala, S. S. Kulkarni, J. Am. Chem. Soc. 138 (2016) 4938-4947.
    [5]
    W. R. Gunther, Y. R. Wang, Y. W. Ji, V. K. Michaelis, S. T. Hunt, R. G. Griffin, Nat. Commun. 3 (2012) 1-8.
    [6]
    K. Izumori, J. Biotechnol. 124 (2006) 717-722.
    [7]
    S. J. Angyal, Carbohydr. Res. 300 (1997) 279-281.
    [8]
    R. Yanagihara, K. Soeda, S. Shiina, S. Osanai, S. Yoshikawa, Bull. Chem. Soc. Jpn. 66 (1993) 2268-2272.
    [9]
    R. Shukla, X. E. Verykios, R. Mutharasan, Carbohydr. Res. 143 (1985) 97-106.
    [10]
    T. Tanase, T. Takei, M. Hidai, S. Yano, Carbohydr. Res. 333 (2001) 303-312.
    [11]
    V. Choudhary, S. Caratzoulas, D. G. Vlachos,. Carbohydr. Res. 368 (2013) 89-95.
    [12]
    M. Moliner, Y. Roman-Leshkov, M. E. Davis, Proc. Natl. Acad. Sci. USA, 107 (2010) 6164-6168.
    [13]
    R. Bermejo-Deval, R. Gounder, M. E. Davis, ACS Catal. 2 (2012) 2705-2713.
    [14]
    H. S. E. Khadem, S. Ennifar, H. S. Isbell, Carbohydr. Res. 185 (1989) 51-59.
    [15]
    J. F. Mendicino, J. Am. Chem. Soc. 82 (1960) 4975-4979.
    [16]
    R. S. Tipson, R. F. Brady Jr, Carbohydr. Res. 10 (1969) 549-563.
    [17]
    T. Vuorinen, Carbohydr. Res. 108 (1982) 213-219.
    [18]
    S. J. Angyal, Glycosci. 215 (2001) 1-14.
    [19]
    F. G. Fischer, H. Schmidt, Chem. Berich. 92 (1959) 2184-2188.
    [20]
    M. Kalman, J. Sokolowski, J. Szafranek, H. Lonnberg, J. Carbohydr. Chem. 6 (1987) 587-592.
    [21]
    H. S. El Khadem, S. Ennifar, H. S. Isbell, Carbohydr. Res. 169 (1987) 13-21.
    [22]
    D. J. MacLaurin, J. W. Green, Can. J. Chem. 47 (1969) 3957-3964.
    [23]
    T. Stahlberg, J. M. Woodley, A. Riisager, Catal. Sci. Technol. 2 (2012) 291-295.
    [24]
    D.-M. Gao, Y.-B. Shen, B. Zhao, Q. Liu, K. Nakanishi, J. Chen, K. Kanamori, H. Wu, Z. He, M. Zeng, H.-C. Liu, ACS Sustain. Chem. Eng. 7 (2019) 8512-8521.
    [25]
    Y. Liu, C., Luo, H. Liu, Angew. Chem. Int. Edit. 124 (2012) 3303-3307.
    [26]
    C. Luo, S. Wang, H. Liu, Angew. Chem. Int. Edit. 46 (2007) 7636-7639.
    [27]
    T.-Y. Deng, J.-Y. Sun, H.-C. Liu, Sci. China Chem. 53 (2010) 1476-1480.
    [28]
    Y. Liu, W. Zhang, C. Hao, S. Wang, H. Liu, Proc. Natl. Acad. Sci. USA. 119 (2022) e2206399119.
    [29]
    M. Zheng, A. Wang, N. Ji, J. Pang, X. Wang, T. Zhang, ChemSusChem. 3 (2010) 63-66.
    [30]
    R. Hao, W. Guan, F. Liu, L. Zhang, A.Wang, Acta Phys.-Chim. Sin. 38 (2022) 2205027-2205034.
    [31]
    A. Wang, T. Zhang, Accounts Chem. Res. 46 (2013) 1377-1386.
    [32]
    G. Zhao, M. Zheng, J. Zhang, A. Wang, T. Zhang, Ind. Eng. Chem. Res. 52 (2013) 9566-9572.
    [33]
    B. Murillo, A. Sanchez, V. Sebastian, C. Casado-Coterillo, O. de la Iglesia, M. P. Lopez-Ram-de-Viu, C. Tellez, J. Coronas, J. Chem. Technol. Biotechnol. 89 (2014) 1344-1350.
    [34]
    Z. Xue, S. Wu, Y. Fu, L. Luo, M. Li, Z. Li, M. Shao, L. Zheng, M. Xu, H. Duan, J. Energy Chem. 76 (2023) 239-248.
    [35]
    Q.-S. Kong, X.-L. Li, H.-B. Shen, H.-J. Xu, Y. Fu, Green Energy Environ. 7 (2022) 957-964.
    [36]
    Z. Li, Y. Huang, X. Chi, D. Li, L. Zhong, X. Li, C. Liu, X. Peng, Green Energy Environ. 7 (2022) 1310-1317.
    [37]
    B. Zhang, T. Guo, Z. Li, F. E. Kuhn, M. Lei, Z. Zhao, J. Xiao, J. Zhang, D. Xu, T. Zhang, C. Li, Nat. Commun. 13 (2022) 3365-3375.
    [38]
    Y.-B. Li, H.-Y. Guo, C.-Q. Deng, J. Deng, Green Energy Environ. 7 (2022) 519-524.
    [39]
    S. Luan, W. Li, Z. Guo, W. Li, X. Hou, Y. Song, R. Wang, Q. Wang, Green Energy Environ. 7 (2022) 1033-1044.
    [40]
    B. Zhang, T. Guo, X. Liu, F. Kuhn, C. Wang, Z. Zhao, J. Xiao, C. Li, Angew. Chem. In. Ed. 60 (2021) 20666-20671.
    [41]
    R. Li, Q. Lin, J, Ren, X. Yang, Y. Wang, L. Kong, Green Energy Environ. 9 (2024) 311-320.
    [42]
    H. Nguyen, V. Nikolakis, D.G. Vlachos, ACS Catal. 6 (2016) 1497-1504.
    [43]
    A.A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis, A.A. Lappas, ChemCatChem 8 (2016) 1100-1110.
    [44]
    S. Zhang, K. Sheng, Y. Liang, J. Liu, E. Shuang, X. Zhang, Sci. Total. Environ. 727 (2020) 138743-138751.
    [45]
    Y. Roman-Leshkov, M. Moliner, J. A. Labinger, M. E. Davis, Angew. Chem. Int. Edit. 122 (2010) 9138-9141.
    [46]
    R. Bermejo-Deval, R. S. Assary, E. Nikolla, M. Moliner, Y. Roman-Leshkov, S. J. Hwang, A. Palsdottir, D. Silverman, R. F. Lobo, L. A. Curtiss, Proc. Natl. Acad. Sci. USA. 109 (2012) 9727-9732.
    [47]
    R. Gounder, M. E. Davis, J. Catal. 308 (2013) 176-188.
    [48]
    T. Witvrouwen, J. Dijkmans, S. Paulussen, B. Sels, J. Energy Chem. 22 (2013) 451-458.
    [49]
    S. Saravanamurugan, M. Paniagua, J. A. Melero, A. Riisager, J. Am. Chem. Soc. 135 (2013) 5246-5249.
    [50]
    L. Ren, Q. Guo, P. Kumar, M Orazov, D. Xu, S. M. Alhassan, K. A. Mkhoyan, M.E. Davis, M. Tsapatsis, Angew. Chem. Int. Edit. 127 (2015) 10998-11001.
    [51]
    L. Rebenfeld, E. Pacsu, J. Am. Chem. Soc. 76 (1953) 4370-4371.
    [52]
    D. P. Langlois, R. F. Larson, U.S. Patent, 1956, 2746889.
    [53]
    J.A. Rendleman Jr, J. E. Hodge, Carbohydr. Res. 75 (1979) 83-99.
    [54]
    D. Mun, N. T. T. Huynh, S. Shin, Y. J. Kim, S. Kim, Y. G. Shul, J. K. Cho, Res. Chem. Intermediat. 43 (2017) 5495-5506.
    [55]
    A.A. Marianou, C. M. Michailof, D. K. Ipsakis, S. A. Karakoulia, K. G. Kalogiannis, H. Yiannoulakis, K. S. Triantafyllidis, A. A. Lappas, ACS Sustain. Chem. Eng. 6 (2018) 16459-16470.
    [56]
    A. I. M. Rabee, S. D. Le, S. Nishimura, Chem. Asian. J. 15 (2020) 294-300.
    [57]
    I. Delidovich, R. Palkovits, Catal. Sci. Technol. 4 (2014) 4322-4329.
    [58]
    S. S. Chen, Y. Cao, D. C. Tsang, J. P. Tessonnier, J. Shang, D. Hou, Z. Shen, S. Zhang, O. Y. Sik, K. C.-W. Wu, ACS Sustain. Chem. Eng. 8 (2020) 6990-7001.
    [59]
    B. Li, L. Li, Q. Zhang, W. Weng, H. Wan, Catal. Commun. 99 (2017) 20-24.
    [60]
    J. Ohyama, Y. Zhang, J. Ito, A. Satsuma, ChemCatChem. 9 (2017) 2864-2868.
    [61]
    M. M. Antunes, A. Fernandes, M. F. Ribeiro, Z. Lin, A. A. Valente, Eur. J. Inorg. Chem. 2020 (2020) 1579-1588.
    [62]
    C. Yue, M. S. Rigutto, E. J. M. Hensen, Catal. Lett. 144 (2014) 2121-2128.
    [63]
    S. Lima, A. S. Dias, Z. Lin, P. Brandao, P. Ferreira, M. Pillinger, J. Rocha, V. Calvino-Casilda, A. A. Valente, Appl. Catal. A. Gen. 339 (2008) 21-27.
    [64]
    I. Graca, M. C. Bacariza. D. Chadwick. Micropor. Mesopor. Mater. 255 (2018) 130-139.
    [65]
    I. Graca, D. Iruretagoyena, D. Chadwick, Appl. Catal. B. Environ. 206 (2017) 434-443.
    [66]
    C. Moreau, R. Durand, A. Roux, D. Tichit, Appl. Catal. A. Gen. 193 (2000) 257-264.
    [67]
    W. N. van der Graaff, C. H. Tempelman, G. Li, B. Mezari, N. Kosinov, E. A. Pidko, E. J. Hensen, ChemSusChem. 9 (2016) 3145-3149.
    [68]
    R. Bermejo-Deval, M. Orazov, R. Gounder, S. J. Hwang, M. E. Davis, ACS Catal. 4 (2014) 2288-2297.
    [69]
    N. Rajabbeigi, A. I. Torres, C. M. Lew, B. Elyassi, L. Ren, Z. Wang, H. J. Cho, W. Fan, P. Daoutidis, M. Tsapatsis, Chem. Eng. Sci. 116 (2014) 235-242.
    [70]
    S. J. Hwang, R. Gounder, Y. Bhawe, M. Orazov, R. Bermejo-Deval, M. E. Davis, Top. Catal. 58 (2015) 435-440.
    [71]
    M. S. Holm, Y. J. Pagan-Torres, S. Saravanamurugan, A. Riisager, J. A. Dumesic, E. Taarning, Green Chem. 14 (2012) 702-706.
    [72]
    R. Gounder, M. E. Davis, ACS Catal. 3 (2013) 1469-1476.
    [73]
    R. Gounder, Catal. Sci. Technol. 4 (2014) 2877-2886.
    [74]
    N. Rai, S. Caratzoulas, D. G. Vlachos, ACS Catal. 3 (2013) 2294-2298.
    [75]
    K. Saenluang, W. Srisuwanno, S. Salakhum, C. Rodaum, P. Dugkhuntod, C. Wattanakit, ACS Appl. Nano Mater. 4 (2021) 11661-11673.
    [76]
    J., Pimenta Lorenti, E. Scolari, N. M. Cabral, C. Bisio, J. M. R. Gallo, Ind. Eng. Chem. Res. 60 (2021) 12821-12833.
    [77]
    Y. N. Palai, A. Shrotri, M. Asakawa, A. Fukuoka, Catal. Today 365 (2021) 241-248.
    [78]
    S. Mahala, S. M. Arumugam, S. Kumar, D. Singh, S. Sharma, B. Devi, S. K. Tadav, ChemCatChem. 13 (2021) 4787-4798.
    [79]
    P. Dugkhuntod, N. Maineawklang, C. Rodaum, P. Pornsetmetakul, K. Saenluang, S. Salakhum, C. Wattanakit, ChemPlusChem. 86 (2021) 1-8.
    [80]
    S. Lu, J. Lyu, X. Han, P. Bai, X. Guo, J. Taiwan Inst. Chem. Eng. 116 (2020) 272-278.
    [81]
    S. Zhao, X. Guo, P. Bai, L. Lv, Asian J. Chem. 26 (2014) 4537-4542.
    [82]
    J. C. Sowden J. Am. Chem. Soc. 76 (1954) 4487-4488.
    [83]
    C. Yue, P. C. M. M. Magusin, B. Mezari, M. Rigutto, E. J. M. Hensen, Micropor. Mesopor. Mat. 180 (2013) 48-55.
    [84]
    I. Graca, M. C. Bacariza, A. Fernandes, D. Chadwick, Appl. Catal. B. Environ. 224 (2018) 660-670.
    [85]
    M. M. Antunes, A. Fernandes, D. Falcao, M. Pillinger, F. Ribeiro, A. A. Valente Catal. Sci. Technol. 10 (2020) 3232-3246.
    [86]
    M. M. Antunes, D. Falcao, A. Fernandes, F. Ribeiro, M. Pillinger, J. Rocha, A. A. Valente, Catal. Today 362 (2021) 162-174.
    [87]
    H. Y. Hsiao, L. C. Chiang, L. F. Chen, G. T. Tsao, Enzyme. Microb. Tech. 4 (1982) 25-31.
    [88]
    I. Delidovich, M. S. Gyngazova, N. Sanchez-Bastardo, J. P. Wohland, C. Hoppe, P. Drabo, Green Chem. 20 (2018)), 724-734.
    [89]
    M. Paniagua, S. Saravanamurugan, M. Melian-Rodriguez, J. A. Melero, A. Riisager, ChemSusChem, 8 (2015) 1088-1094.
    [90]
    V. Choudhary, A. B. Pinar, S. I. Sandler, D. G. Vlachos, R. F. Lobo, ACS Catal. 1 (2011) 1724-1728.
    [91]
    J. Dijkmans, D. Gabriels, M. Dusselier, F. de Clippel, P. Vanelderen, K. Houthoofd, A.vMalfliet, Y. Pontikes, B. F. Sels, Green Chem. 15 (2013) 2777-2785.
    [92]
    P. Drabo, I. Delidovich, Catal. Commun. 107 (2018) 24-28.
    [93]
    D.-M. Gao, S. Zhang, T. Lei, J. Zhu, T. Huhe, F. Sun, G. Zeng, H. Liu, Ind. Eng. Chem. Res. 61 (2022) 18362–18371.
    [94]
    L. Hough, J. K. N. Jones, E. L. Richards. J. Chem. Soc. 1954, 295-297.
    [95]
    Y. Yang, C. W. Hu, M. M. Abu-Omar, ChemSusChem 5 (2012) 405-410.
    [96]
    Y. B. Tewari, R. N. Goldberg, Biophy. Chem. 22 (1985), 197-204.
    [97]
    Y. B. Tewari, D. K. Steckler, R. N. Goldberg, 22 (1985) 181–185.
    [98]
    D. Y. Murzin, E. V. Murzina, A. Aho, M. A. Kazakova, A. G. Selyutin, D. Kubicka, V. L. Kuznetsov, I. L. Simakova, Catal. Sci. Technol. 7 (2017) 5321-5331.
    [99]
    M. A. de la Fuente, M. Juarez, D. de Rafael, M. Villamiel, A. Olano, Food Chem. 66 (1999) 301-306.
    [100]
    D.-M. Gao, T. Kobayashi, S. Adachi, Food Chem. 175 (2015) 465-470.
    [101]
    D.-M. Gao, T. Kobayashi, S. Adachi, Biosci. Biotechnol. Biochem. 80 (2016) 998-1005.
    [102]
    T. Yamauchi, K. Fukushima, R. Yanagihara, S. Osanai, S. Yoshikawa, Carbohyd. Res. 204 (1990) 233-239.
    [103]
    Corbett, W. M., & Kenner, J. J. Chem. Soc. 1954, 3281-3283.
    [104]
    V. Choudhary, A. B. Pinar, R. F. Lobo, D. G. Vlachos, S. I. Sandler, ChemSusChem. 6 (2013) 2369-2376.
    [105]
    T. Tanase, K. Ishida, T. Watanabe, M. Komiyama, K. Koumoto, S. Yano. M. Hidai, S. Yoshikawa. Chem. Lett. 17 (1988) 327-330.
    [106]
    I. Delidovich, R. Palkovits, ChemSusChem. 9 (2016) 547-561.
    [107]
    V. Bilik, L. Stancovik, Chem. Pap. 27 (1973) 544-546.
    [108]
    V. Bilik, L. Stancovik, Chem. Zvesti 27 (1973) 547-550.
    [109]
    S. Kolaric. J. Mol. Catal. 79 (1993) 365-374.
    [110]
    V. Bilik, Chem. Zvesti. 26 (1972) 372-375.
    [111]
    V. Bilik, Chem. Zvesti. 26 (1972) 183-186.
    [112]
    Z. Hricoviniova, Tetrahedron-Asymmetr. 19 (2008) 1853-1856.
    [113]
    F. Ju, V D. ander Velde, E. Nikolla, ACS Catal. 4 (2014) 1358-1364.
    [114]
    A. Takagaki, S. Furusato, R. Kikuchi, S. T. Oyama, ChemSusChem. 8 (2015) 3769-3772.
    [115]
    V. Bilik, I. Knezek, Chem. Pap. 46 (1992) 193-195.
    [116]
    V. Bilik, L. Petrus, V. Farkas, Chem. Zvesti. 29 (1975) 690-693.
    [117]
    V. Bilik, L. Petrus, M. Misikova, V. Sutoris, Chem. Pap. 33 (1979) 114-117.
    [118]
    M. Rellan-Pineiro, M. Garcia-Rates, N. Lopez, Green Chem. 19 (2017) 5932-5939.
    [119]
    L. Petrus, M. Petrusova, Z. Hricoviniova, Top. Curr. Chem. 215 (2001) 15-41.
    [120]
    V. Bilik, I. Knezek, K. Bilikova, Chem, Pap.- Chem Zvesti. 42 (1988) 401-405.
    [121]
    V. Bilik, W. Voelter, E. Bayer, Justus Liebigs Annalen der Chemie 7 (1974), 1162-1166.
    [122]
    P. L. Durette, D. Horton, Adv. Carbohydr. Chem. Biochem. 26 (1971) 49-125.
    [123]
    S.J. Angyal. Angew. Chem. Int. Edit. 8 (1969) 157-166.
    [124]
    Z. Hricoviniova, M. Hricovini, L. Petrus, Chem. Pap. 52 (1998) 692-698.
    [125]
    W. G. Overend, N. R. Williams, J. Chem. Soc. 1965, 3446-3448.
    [126]
    Z. Hricoviniova, M. Hricovini, M, Petrusova, A. S. Serianni, L. Petrus, Carbohydr. Res. 319 (1999) 38-46.
    [127]
    E. L. Clark Jr, M. L. Hayes, R. Barker, Carbohydr. Res. 153 (1986) 263-270.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return