Volume 9 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Yanyan Liu, Ziyi Feng, Hanmei Jiang, Xueying Dong, Changgong Meng, Yifu Zhang. Tailoring NH4+ storage by regulating oxygen defect in ammonium vanadate. Green Energy&Environment, 2024, 9(7): 1171-1182. doi: 10.1016/j.gee.2023.02.001
Citation: Yanyan Liu, Ziyi Feng, Hanmei Jiang, Xueying Dong, Changgong Meng, Yifu Zhang. Tailoring NH4+ storage by regulating oxygen defect in ammonium vanadate. Green Energy&Environment, 2024, 9(7): 1171-1182. doi: 10.1016/j.gee.2023.02.001

Tailoring NH4+ storage by regulating oxygen defect in ammonium vanadate

doi: 10.1016/j.gee.2023.02.001
  • Defect engineering is an effective strategy for modifying the energy storage materials to improve their electrochemical performance. However, the impact of oxygen defect and its content on the electrochemical performances in the burgeoning aqueous NH4+ storage field remains explored. Therefore, for the first time in this work, an oxygen-defective ammonium vanadate [(NH4)2V10O25·8H2O, denoted as Od-NHVO] with a novel 3D porous flower-like architecture was achieved via the reduction of thiourea in a mild reaction condition, which is a facile method that can realize the intention to regulate the oxygen defect content, with the capability of mass-production. The as-prepared OdM-NHVO with moderate oxygen defect content can deliver a stable specific capacitance output (505 F g-1, 252 mAh g-1 at 0.5 A g-1 with ~80% capacitance retention after 10,000 cycles), which benefits from extra active sites, unimpeded NH4+-migration path and relatively high structure integrity. In contrast, low oxygen defect content will lead to the torpid electrochemical reaction kinetics while too high content of it will reduce the charge-storage capability and induce structural disintegration. The superior NH4+-storage behavior is achieved with the reversible intercalation/de-intercalation process of NH4+ accompanied by forming/breaking of hydrogen bond. As expected, the assembled flexible OdM-NHVO//PTCDI quasi-solid-state hybrid supercapacitor (FQSS HSC) also exhibits high areal capacitance, energy density and reliable flexibility. This work provides a new avenue for developing materials with oxygen-deficient structure for application in various aqueous non-metal cation storage systems.

     

  • loading
  • [1]
    Y. Wang, J. Yi, Y. Xia, Adv. Energy Mater. 2(2012)830-840.
    [2]
    Y. Ma, R. Shu, T. Xu, J. Li, D. Zhu, X. Jin, M. Wu, X. Cao, New J. Chem. 45(2021)20099-20102.
    [3]
    Y. Liu, Z. Pan, D. Tian, T. Hu, H. Jiang, J. Yang, J. Sun, J. Zheng, C. Meng, Y. Zhang, Chem. Eng. J. 399(2020)125842.
    [4]
    Y. Liu, Y. Zhang, H. Jiang, J. Sun, Z. Feng, T. Hu, C. Meng, Z. Pan, Chem. Eng. J. 435(2022)134949.
    [5]
    S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song, Z. Niu, Angew. Chem. Int. Ed. 59(2020)22002-22006.
    [6]
    B. Yang, T. Qin, Y. Du, Y. Zhang, J. Wang, T. Chen, M. Ge, D. Bin, C. Ge, H. Lu, Chem. Commun. 58(2022)1550-1553.
    [7]
    C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang, K.N. Dinh, H. Tan, C. Wu, T. Wu, Y. Ren, J. Chen, Z. Liu, M. Srinivasan, X. Rui, Q. Yan, G. Yu, J. Am. Chem. Soc. 142(2020)15295-15304.
    [8]
    C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Nat. Commun. 10(2019)73.
    [9]
    G. Liang, F. Mo, X. Ji, C. Zhi, Nat. Rev. Mater. 6(2021)109-123.
    [10]
    X. Wu, Y. Qi, J.J. Hong, Z. Li, A.S. Hernandez, X. Ji, Angew. Chem. Int. Ed. 56(2017)13026-13030.
    [11]
    J. Han, M. Zarrabeitia, A. Mariani, M. Kuenzel, A. Mullaliu, A. Varzi, S. Passerini, Adv. Mater 34(2022)2201877.
    [12]
    J.J. Holoubek, H. Jiang, D. Leonard, Y. Qi, G.C. Bustamante, X. Ji, Chem. Commun. 54(2018)9805-9808.
    [13]
    R. Zhang, S. Wang, S. Chou, H. Jin, Adv. Funct. Mater 32(2022)2112179.
    [14]
    Q. Chen, M. Song, X. Zhang, J. Zhang, G. Hou, Y. Tang, J. Mater. Chem. A 10(2022)15614-15622.
    [15]
    C. Li, W. Yan, S. Liang, P. Wang, J. Wang, L. Fu, Y. Zhu, Y. Chen, Y. Wu, W. Huang, Nanoscale Horiz 4(2019)991-998.
    [16]
    S. Qiu, Y. Xu, X. Li, S.K. Sandstrom, X. Wu, X. Ji, Electrochem. Commun. 122(2021)106880.
    [17]
    C.D. Wessells, S.V. Peddada, M.T. Mcdowell, R.A. Huggins, Y. Cui, J. Electrochem. Soc. 159(2011) A98-A103.
    [18]
    M. Xia, X. Zhang, H. Yu, Z. Yang, S. Chen, L. Zhang, M. Shui, Y. Xie, J. Shu, Chem. Eng. J. 421(2021)127759.
    [19]
    X. Wu, Y. Xu, H. Jiang, Z. Wei, J.J. Hong, A.S. Hernandez, F. Du, X. Ji, ACS Appl. Energy Mater. 1(2018)3077-3083.
    [20]
    G. Liang, Y. Wang, Z. Huang, F. Mo, X. Li, Q. Yang, D. Wang, H. Li, S. Chen, C. Zhi, Adv. Mater. 32(2020)1907802.
    [21]
    S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li, J. Holoubek, W.F. Stickle, B. Key, C. Liu, J. Lu, P.A. Greaney, X. Zhang, X. Ji, Chem 5(2019)1537-1551.
    [22]
    Y. Song, Q. Pan, H. Lv, D. Yang, Z. Qin, M.-Y. Zhang, X. Sun, X.-X. Liu, Angew. Chem. Int. Ed. 60(2021)5718-5722.
    [23]
    S.F. Kuchena, Y. Wang, ACS Appl. Energy Mater. 3(2020)11690-11698.
    [24]
    Y. Zhang, Y. An, B. Yin, J. Jiang, S. Dong, H. Dou, X. Zhang, J. Mater. Chem. A 7(2019)11314-11320.
    [25]
    M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341(2013)1502-1505.
    [26]
    X. Chen, P. Wang, Z. Feng, C. Meng, Y. Zhang, Chem. Eng. J. 445(2022)136747.
    [27]
    D. Yu, Z. Wei, X. Zhang, Y. Zeng, C. Wang, G. Chen, Z.X. Shen, F. Du, Adv. Funct. Mater. 31(2021)2008743.
    [28]
    X. Mu, Y. Song, Z. Qin, J. Meng, Z. Wang, X.-X. Liu, Chem. Eng. J. 453(2023)139575.
    [29]
    C. Han, J. Zhu, K. Fu, D. Deng, W. Luo, L. Mai, Chem. Commun. 6(2022)791-794.
    [30]
    P. Wang, Y. Zhang, Z. Feng, Y. Liu, C. Meng, J. Colloid Interface Sci. 606(2022)1322-1332.
    [31]
    D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu, Y. Zhang, F. Dong, Y. Wang, Y. Xia, Chem 6(2020)968-984.
    [32]
    M.H. Alfaruqi, S. Islam, V. Mathew, J. Song, S. Kim, D.P. Tung, J. Jo, S. Kim, J.P. Baboo, Z. Xiu, J. Kim, Appl. Surf. Sci. 404(2017)435-442.
    [33]
    F. Kataoka, T. Ishida, K. Nagita, V. Kumbhar, K. Yamabuki, M. Nakayama, ACS Appl. Energy Mater. 3(2020)4720-4726.
    [34]
    J. Long, J. Gu, Z. Yang, J. Mao, J. Hao, Z. Chen, Z. Guo, J. Mater. Chem. A 7(2019)17854-17866. Y. Liu et al./Green Energy&Environment 9(2024)1171-11821181
    [35]
    M. Liao, J. Wang, L. Ye, H. Sun, Y. Wen, C. Wang, X. Sun, B. Wang, H. Peng, Angew. Chem. Int. Ed. 59(2020)2273-2278.
    [36]
    S. Chen, H. Yu, L. Chen, H. Jiang, C. Li, Chem. Eng. J. 423(2021)130208.
    [37]
    J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z.-S. Wu, J. Qin, Nano Energy 84(2021)105876.
    [38]
    B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, J. Mater. Chem. A 7(2019)940-945.
    [39]
    Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Adv. Mater. 30(2018)1802396.
    [40]
    T. Meng, B. Li, L. Hu, H. Yang, W. Fan, S. Zhang, P. Liu, M. Li, F.L. Gu, Y. Tong, Small Methods 3(2019)1900185.
    [41]
    H. He, D. Huang, Q. Gan, J. Hao, S. Liu, Z. Wu, W.K. Pang, B. Johannessen, Y. Tang, J.-L. Luo, H. Wang, Z. Guo, ACS Nano 13(2019)11843-11852.
    [42]
    Y. Lin, F. Zhou, M. Chen, S. Zhang, C. Deng, Chem. Eng. J. 396(2020)125259.
    [43]
    G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, S. Liang, Adv. Funct. Mater. 29(2019)1808375.
    [44]
    H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai, X. Zhang, M. Yu, Y. Tong, X. Lu, Energy Storage Mater. 21(2019)154-161.
    [45]
    W. Bi, G. Gao, G. Wu, M. Atif, M.S. Alsalhi, G. Cao, Energy Storage Mater. 40(2021)209-218.
    [46]
    Z. Ma, K. Rui, Y. Zhang, D. Li, Q. Wang, Q. Zhang, M. Du, J. Yan, C. Zhang, X. Huang, J. Zhu, W. Huang, Small 15(2019)1900583.
    [47]
    K. Zheng, Y. Zeng, S. Liu, C. Zeng, Y. Tong, Z. Zheng, T. Zhu, X. Lu, Energy Storage Mater. 22(2019)410-417.
    [48]
    W. Bi, E. Jahrman, G. Seidler, J. Wang, G. Gao, G. Wu, M. Atif, M. AlSalhi, G. Cao, ACS Appl. Mater. Interfaces 11(2019)16647-16655.
    [49]
    G. Fang, S. Liang, Z. Chen, P. Cui, X. Zheng, A. Pan, B. Lu, B. Lu, J. Zhou, Adv. Funct. Mater. 29(2019)1905267.
    [50]
    S. Singal, A. Joshi, G. Singh, R.K. Sharma, J. Power Sources 475(2020)228669.
    [51]
    T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie, J. Chen, Y.-W. Zhang, S.J. Pennycook, W.S.V. Lee, J. Xue, Adv. Energy Mater. 9(2019)1803815.
    [52]
    H. Luo, B. Wang, C. Wang, F. Wu, F. Jin, B. Cong, Y. Ning, Y. Zhou, D. Wang, H. Liu, S. Dou, Energy Storage Mater. 33(2020)390-398.
    [53]
    D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S.-Z. Qiao, Angew. Chem. Int. Ed. 58(2019)7823-7828.
    [54]
    J. Yang, Q. Zhang, Z. Wang, Z. Wang, L. Kang, M. Qi, M. Chen, W. Liu, W. Gong, W. Lu, P.P. Shum, X. Wei, Adv. Energy Mater. 10(2020)2001064.
    [55]
    Z. Pan, J. Yang, J. Yang, Q. Zhang, H. Zhang, X. Li, Z. Kou, Y. Zhang, H. Chen, C. Yan, J. Wang, ACS Nano 14(2020)842-853.
    [56]
    L. Shan, Y. Wang, S. Liang, B. Tang, Y. Yang, Z. Wang, B. Lu, J. Zhou, InfoMat. 3(2021)1028-1036.
    [57]
    X. Zhang, M. Xia, H. Yu, J. Zhang, Z. Yang, L. Zhang, J. Shu, NanoMicro Lett. 13(2021)139.
    [58]
    Q. Chen, J. Jin, M. Song, X. Zhang, H. Li, J. Zhang, G. Hou, Y. Tang, L. Mai, L. Zhou, Adv. Mater 34(2021)2107992.
    [59]
    H. Li, J. Yang, J. Cheng, T. He, B. Wang, Nano Energy 68(2020)104369.
    [60]
    P. Wang, Y. Zhang, H. Jiang, X. Dong, C. Meng, Chem. Eng. J. 427(2022)131548.
    [61]
    Y. Zhang, C. Wang, X. Dong, H. Jiang, T. Hu, C. Meng, C. Huang, Chem. Eng. J. 417(2021)127964.
    [62]
    Y. Zhang, H. Jiang, Q. Wang, C. Meng, Chem. Eng. J. 352(2018)519-529.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return