Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Xiaohe Jin, Yirui Deng, Han Tian, Miaomiao Zhou, Wenhao Tang, Huiyou Dong, Xinquan Zhang, Ruiping Liu. Homovalent doping: An efficient strategy of the enhanced TiNb2O7 anode for lithium-ion batteries. Green Energy&Environment, 2024, 9(8): 1257-1266. doi: 10.1016/j.gee.2023.01.007
Citation: Xiaohe Jin, Yirui Deng, Han Tian, Miaomiao Zhou, Wenhao Tang, Huiyou Dong, Xinquan Zhang, Ruiping Liu. Homovalent doping: An efficient strategy of the enhanced TiNb2O7 anode for lithium-ion batteries. Green Energy&Environment, 2024, 9(8): 1257-1266. doi: 10.1016/j.gee.2023.01.007

Homovalent doping: An efficient strategy of the enhanced TiNb2O7 anode for lithium-ion batteries

doi: 10.1016/j.gee.2023.01.007
  • The low energy density, unsatisfied cycling performance, potential safety issue and slow charging kinetics of the commercial lithium-ion batteries restrained their further application in the fields of fast charging and long-haul electric vehicles. Monoclinic TiNb2O7 (TNO) with the theoretical capacity of 387 mAh g-1 has been proposed as a high-capacity anode materials to replace Li4Ti5O12. In this work, homovalent doping strategy was used to enhance the electrochemical performance of TiNb2O7 (TNO) by employing Zr to partial substitute Ti through solvothermal method. The doping of Zr4+ ions can enlarge the lattice structure without changing the chemical valence of the original elements, refine and homogenize the grains, improve the electrical conductivity, and accelerate the ion diffusion kinetics, and finally enhance the cycle and rate performance. Specifically, Z0.05-TNO shows initial discharge capacity of as high as 312.2 mAh g-1 at 1 C and 244.8 mAh g-1 at 10 C, and still maintains a high specific capacity of 171.3 mAh g-1 after 800 cycles at 10 C. This study provides a new strategy for high-performance fast-charging energy storage electrodes.

     

  • loading
  • [1]
    D. Zhang, L. Li, W. Zhang, M. Cao, H. Qiu, X. Ji, Chin. Chem. Lett. 34 (2023) 107122.
    [2]
    Y. Yan, X. Zhao, H. Dou, J. Wei, W. Zhao, Z. Sun, et al., Chin. Chem. Lett. 32 (2021) 910-913.
    [3]
    Q. Yi, W. Zhang, T. Wang, J. Han, C. Sun, Energy Environ. Mater. 0 (2022) 1-8.
    [4]
    J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu, S. Lu, et al., Energy Environ. Mater. 34 (2023) 107122.
    [5]
    X. Yu, X. Zhang, Y. Lai, D. Wang, Y. Liu, Green Energy Eviron. 7 (2022) 485-491.
    [6]
    H. Yu, S. Wang, Y. Hu, G. He, L.Q. Bao, I.P. Parkin, et al., Green Energy Environ. 7 (2022) 266-274.
    [7]
    P. Simon, Y. Gogotsi, B. Dunn, Science 343 (2014) 1210-1211.
    [8]
    N.A. Kaskhedikar, J. Maier, Adv. Mater. 21 (2009) 2664-2680.
    [9]
    V. Kabra, M. Parmananda, C. Fear, F.L.E. Usseglio-Viretta, A. Colclasure, K. Smith, et al., ACS Appl. Mater. Interfaces 12 (2020) 55795-55808.
    [10]
    X. Lu, Z. Jian, Z. Fang, L. Gu, Y.-S. Hu, W. Chen, et al., Energy Environ. Sci. 4 (2011) 2638-2644.
    [11]
    X. Wu, X. Liang, X. Zhang, L. Lan, S. Li, Q. Gai, J. Adv. Ceram. 10 (2021) 347-354.
    [12]
    C. Liu, Y. Qiu, Y. Liu, K. Xu, N. Zhao, C. Lao, et al., J. Adv. Ceram. 11 (2022) 295-307.
    [13]
    W. Chen, H. Jiang, Y. Hu, Y. Dai, C. Li, Chem. Commun. 50 (2014) 8856-8859.
    [14]
    C. Pham, J.H. Choi, J. Yun, A.S. Bandarenka, J. Kim, P.V. Braun, et al., ACS Nano 11 (2017) 1026-1033.
    [15]
    J.-T. Han, Y.-H. Huang, J.B. Goodenough, Chem. Mater. 23 (2011) 2027-2029.
    [16]
    Y. Yang, B. Qiao, X. Yang, L. Fang, C. Pan, W. Song, H. Hou, X. Ji, Adv. Funct. Mater. 24 (2014) 4349-4356.
    [17]
    B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao, J. Liu, et al., Energy Environ. Sci. 7 (2014) 2220-2226.
    [18]
    R. Qian, C. Yang, D. Ma, K. Li, T. Feng, J. Feng, J.H. Pan, Electrochim. Acta 379 (2021) 138179-138189.
    [19]
    M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W. Daud, J. Environ. Manag. 198 (2017) 78-94.
    [20]
    C. Yang, C. Lin, S. Lin, Y. Chen, J. Li, J. Power Sources 328 (2016) 336-344.
    [21]
    C. Lei, X. Qin, S. Huang, T. Wei, Y. Zhang, Chemelectrochem 8 (2021) 3379-3383.
    [22]
    C. Lin, S. Yu, S. Wu, S. Lin, Z.-Z. Zhu, J. Li, et al., J. Mater. Chem. 3 (2015) 8627-8635.
    [23]
    K. Tian, Z. Wang, H. Di, H. Wang, Z. Zhang, S. Zhang, et al., ACS Appl. Mater. Interfaces 14 (2022) 10478-10488.
    [24]
    K. Liu, J.-a. Wang, J. Yang, D. Zhao, P. Chen, J. Man, et al., Chem. Eng. J. 407 (2021) 127190-127202.
    [25]
    Y.-S. Hsiao, C.-W. Chang-Jian, H. Chu Weng, H.-H. Chiang, C.-Z. Lu, W. Kong Pang, et al., Appl. Surf. Sci. 573 (2022) 151517-151527.
    [26]
    T.-H. Yeh, C.-C. Chou, J. Phys. Chem. Solid. 69 (2008) 386-392.
    [27]
    M. Fehse, S. Cavaliere, P.E. Lippens, I. Savych, A. Iadecola, L. Monconduit, et al., J. Phys. Chem. C 117 (2013) 13827-13835.
    [28]
    T.-F. Yi, J. Shu, Y.-R. Zhu, X.-D. Zhu, C.-B. Yue, A.-N. Zhou, et al., Electrochim. Acta 54 (2009) 7464-7470.
    [29]
    I. Singh, R. Kumar, B.I. Birajdar, J. Environ. Chem. Eng. 5 (2017) 2955-2963.
    [30]
    A. Kalita, M.P.C. Kalita, Phys. Exp. 92 (2017) 36-40.
    [31]
    W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49 (2010) 299-312.
    [32]
    L. Hu, L. Luo, L. Tang, C. Lin, R. Li, Y. Chen, J. Mater. Chem. 6 (2018) 9799-9815.
    [33]
    W. Wu, M. Liu, Y. Pei, W. Li, W. Lin, Q. Huang, et al., Adv. Energy Mater. (2022) 2201130-2201140.
    [34]
    Z. Ma, G. Shao, G. Wang, Y. Zhang, J. Du, J. Solid State Chem. 210 (2014) 232-237.
    [35]
    L. Perfler, V. Kahlenberg, C. Wikete, D. Schmidmair, M. Tribus, R. Kaindl, Inorg. Chem. 54 (2015) 6836-6848.
    [36]
    J. Sakfali, S. Ben Chaabene, R. Akkari, F. Dappozze, G. Berhault, C. Guillard, et al., J. Photochem. Photobiol., A 430 (2022) 113970-113981.
    [37]
    J. Lukáč, M. Klementová, P. Bezdička, S. Bakardjieva, J. Šubrt, L. Szatmáry, et al., J. Mater. Sci. 42 (2007) 9421-9428.
    [38]
    I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Opt. Mater. 35 (2013) 1189-1193.
    [39]
    P. Wu, B. Shi, H. Tu, C. Guo, A. Liu, G. Yan, Z. Yu, J. Adv. Ceram. 10 (2021) 1129-1139.
    [40]
    A. Liu, H. Zhang, C. Xing, Y. Wang, J. Zhang, X. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 21349-21361.
    [41]
    W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang, W. Mao, et al., Electrochim. Acta 72 (2012) 138-142.
    [42]
    G. Zhu, Q. Li, R. Che, Chem. 24 (2018) 12932-12937.
    [43]
    W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu, X. Wang, et al., Adv. Mater. 29 (2017) 1700136-1700145.
    [44]
    X. Li, X. Sun, X. Hu, F. Fan, S. Cai, C. Zheng, et al., Nano Energy 77 (2020) 105143-105163.
    [45]
    J.-M. Peng, Z.-Q. Chen, Y. Li, S.-J. Hu, Q.-C. Pan, F.-H. Zheng, et al., Rare Met. 41 (2021) 951-959.
    [46]
    L. Liao, T. Fang, X. Zhou, Y. Gao, X. Cheng, L. Zhang, et al., Solid State Ionics 254 (2014) 27-31.
    [47]
    X. Wang, G. Shen, Nano Energy 15 (2015) 104-115.
    [48]
    Z. Guan, K. Zou, X. Wang, Y. Deng, G. Chen, Chin. Chem. Lett. 32 (2021) 3847-3851.
    [49]
    S. Jayaraman, V. Aravindan, P. Suresh Kumar, W. Chui Ling, S. Ramakrishna, S. Madhavi, ACS Appl. Mater. Interfaces 6 (2014) 8660-8666.
    [50]
    S.-J. Zhang, H. Chen, Y.-X. Xu, C.-S. An, K.-X. Xiang, Rare Met. 41 (2022) 3129-3141.
    [51]
    R.-X. Sun, Y. Yue, X.-F. Cheng, K. Zhang, S.-Y. Jin, et al., Rare Met. 40 (2021) 3205-3214.
    [52]
    S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, et al., Nano Energy 34 (2017) 15-25.
    [53]
    H. Xu, S. Yuan, Z. Wang, Y. Zhao, J. Fang, L. Shi, RSC Adv. 4 (2014) 8472-8480.
    [54]
    Y. Wang, Y. Liu, P. He, J. Jin, X. Zhao, Q. Shen, et al., Energy Environ. Mater. (2022), http://doi.org/10.1002/eem2.12519.
    [55]
    L. Yin, D. Pham-Cong, I. Jeon, J.-P. Kim, J. Cho, S.-Y. Jeong, et al., Chem. Eng. J. 382 (2020) 122800-122838.
    [56]
    C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, et al., Electrochim. Acta 260 (2018) 65-72.
    [57]
    H. Li, L. Shen, J. Wang, S. Fang, Y. Zhang, H. Dou, et al., J. Mater. Chem. 3 (2015) 16785-16790.
    [58]
    L. Fei, Y. Xu, X. Wu, Y. Li, P. Xie, S. Deng, et al., Nanoscale 5 (2013) 11102-11107.
    [59]
    Y. Yang, Y. Li, K. Liu, K. Zhang, S. Jin, Y. Bao, et al., Int. J. Hydrogen Energy 46 (2021) 3425-3436.
    [60]
    J. Zhao, H. Ren, Q. Liang, D. Yuan, S. Xi, C. Wu, et al., Nano Energy 62 (2019) 94-102.
    [61]
    L. Meng, R. Guo, F. Li, Y. Ma, J. Peng, T. Li, et al., Energy Technol-Ger. 8 (2019) 1900986-1900993.
    [62]
    W. Liu, J. Li, K. Feng, A. Sy, Y. Liu, L. Lim, et al., ACS Appl. Mater. Interfaces 8 (2016) 25941-25953.
    [63]
    X. Liu, H. Wang, S. Zhang, G. Liu, H. Xie, J. Ma, Electrochim. Acta 292 (2018) 759-768.
    [64]
    Y. Yang, Y. Yue, L. Wang, X. Cheng, Y. Hu, Z.-z. Yang, et al., Int. J. Hydrogen Energy 45 (2020) 12583-12592.
    [65]
    B. Wang, Y. Wei, H. Fang, X. Qiu, Q. Zhang, H. Wu, et al., Adv. Sci. 8 (2021) 2002866-2002881.
    [66]
    K. Yong, H. Fang, B. Wang, X. Qiu, K. Wu, Q. Wang, et al., Adv. Energy Mater. 12 (2022) 2200653-2200668.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return