Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Yao Qiu, Chunjie Zhang, Rui Zhang, Zhiyuan Liu, Huazeng Yang, Shuai Qi, Yongzhao Hou, Guangwu Wen, Jilei Liu, Dong Wang. Integration of pore structure modulation and B, N co-doping for enhanced capacitance deionization of biomass-derived carbon. Green Energy&Environment, 2023, 8(5): 1488-1500. doi: 10.1016/j.gee.2023.01.005
Citation: Yao Qiu, Chunjie Zhang, Rui Zhang, Zhiyuan Liu, Huazeng Yang, Shuai Qi, Yongzhao Hou, Guangwu Wen, Jilei Liu, Dong Wang. Integration of pore structure modulation and B, N co-doping for enhanced capacitance deionization of biomass-derived carbon. Green Energy&Environment, 2023, 8(5): 1488-1500. doi: 10.1016/j.gee.2023.01.005

Integration of pore structure modulation and B, N co-doping for enhanced capacitance deionization of biomass-derived carbon

doi: 10.1016/j.gee.2023.01.005
  • Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization (CDI), owing to good electroconductivity, easy availability, intrinsic pores/channels. However, conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area. Moreover, biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions, resulting in limited desalination performance. Herein, pore structure optimization and element co-doping are integrated on banana peels (BP)-derived carbon to construct hierarchically porous and B, N co-doped carbon with large ions-accessible surface area. A unique expansion-activation (EA) strategy is proposed to modulate the porosity and specific surface area of carbon. Furthermore, B, N co-doping could increase the ions-accessible sites with improved hydrophilicity, and promote ions adsorption. Benefitting from the synergistic effect of hierarchical porosity and B, N co-doping, the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity (29.5 mg g−1), high salt adsorption rate (6.2 mg g−1 min−1), and versatile adsorption ability for other salts. Density functional theory reveals the enhanced deionization mechanism by pore and B, N co-doping. This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon, and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.

     

  • loading
  • [1]
    S. Duan, Y. Zhao, S. Jiang, Z. Yang, Y. Ju, C. Chen, L. Huang, F. Chen, Chem. Eng. J. 442 (2022) 136287.
    [2]
    B. Li, T. Zheng, S. Ran, M. Sun, J. Shang, H. Hu, P.H. Lee, S.T. Boles, Environ. Sci. Technol. 54 (2020) 1848-1856.
    [3]
    M. Liang, X. Bai, F. Yu, J. Ma, Nano Res. 14 (2020) 684-691.
    [4]
    M. Mao, T. Yan, J. Shen, J. Zhang, D. Zhang, Environ. Sci. Technol. 55 (2021) 7665-7673.
    [5]
    K. Wang, Y. Liu, Z. Ding, Z. Chen, X. Xu, M. Wang, T. Lu, L. Pan, Chem. Eng. J. 433 (2022) 133578.
    [6]
    C. Zhang, J. Ma, L. Wu, J. Sun, L. Wang, T. Li, T.D. Waite, Environ. Sci. Technol. 55 (2021) 4243-4267.
    [7]
    S. Zhao, T. Yan, H. Wang, G. Chen, L. Huang, J. Zhang, L. Shi, D. Zhang, Appl. Surf. Sci. 369 (2016) 460-469.
    [8]
    B. Han, G. Cheng, Y. Wang, X. Wang, Chem. Eng. J. 360 (2019) 364-384.
    [9]
    M. Son, V. Pothanamkandathil, W. Yang, J.S. Vrouwenvelder, C.A. Gorski, B.E. Logan, Environ. Sci. Technol. 54 (2020) 3628-3635.
    [10]
    B. Zhang, A. Boretti, S. Castelletto, Chem. Eng. J. 435 (2022) 134959.
    [11]
    Z. Chen, Z. Ding, Y. Chen, X. Xu, Y. Liu, T. Lu, L. Pan, Chem. Eng. J. 452 (2023) 139451.
    [12]
    J.G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M.E. Suss, P. Liang, P.M. Biesheuvel, R.L. Zornitta, L.C.P.M. De Smet, Energy Environ. Sci. 14 (2021) 1095-1120.
    [13]
    P.T. Juchen, K.M. Barcelos, K.S.G.C. Oliveira, L.A.M. Ruotolo, Chem. Eng. J. 429 (2022) 132209.
    [14]
    R. Chen, X. Deng, C. Wang, J. Du, Z. Zhao, W. Shi, J. Liu, F. Cui, Chem. Eng. J. 435 (2022) 134845.
    [15]
    W. Chen, X. He, Z. Jiang, B. Li, X.-Y. Li, L. Lin, Chem. Eng. J. 451 (2023) 139071.
    [16]
    S. Hand, J.S. Guest, R.D. Cusick, Environ. Sci. Technol. 53 (2019) 13353-13363.
    [17]
    X. Shen, Y. Xiong, R. Hai, F. Yu, J. Ma, Environ. Sci. Technol. 54 (2020) 4554-4563.
    [18]
    G. Wang, T. Yan, J. Zhang, L. Shi, D. Zhang, Environ. Sci. Technol. 54 (2020) 8411-8419.
    [19]
    L. Xu, L. Tang, S. Peng, Y. Mao, D. Wu, Chem. Eng. J. 446 (2022) 137415.
    [20]
    Z. Ding, X. Xu, J. Li, Y. Li, K. Wang, T. Lu, M.S.A. Hossain, M.A. Amin, S. Zhang, L. Pan, Y. Yamauchi, Chem. Eng. J. 430 (2022) 133161.
    [21]
    E.N. Guyes, T. Malka, M.E. Suss, Environ. Sci. Technol. 53 (2019) 8447-8454.
    [22]
    B. Li, K. Sun, W. Xu, X. Liu, A. Wang, S. Boles, B. Xu, H. Hu, D. Yao, Nano Res. (2022) DOI: 10.1007/s12274-022-4491-3.
    [23]
    M. Mao, T. Yan, J. Shen, J. Zhang, D. Zhang, Environ. Sci. Technol. 55 (2021) 3333-3340.
    [24]
    M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Energy Environ. Sci. 8 (2015) 2296-2319.
    [25]
    G. Tan, S. Lu, N. Xu, D. Gao, X. Zhu, Environ. Sci. Technol. 54 (2020) 5843-5852.
    [26]
    S. Wang, G. Wang, T. Wu, C. Li, Y. Wang, X. Pan, F. Zhan, Y. Zhang, S. Wang, J. Qiu, Environ. Sci. Technol. 53 (2019) 6292-6301.
    [27]
    Z. Cao, S. Hu, Q. Yang, J. Yu, Y. Pan, J. Zuo, H. Song, Z. Ye, S. Zhang, Chem. Eng. J. 450 (2022) 138126.
    [28]
    Y. Zhang, J. Zhou, D. Wang, R. Cao, J. Li, Chem. Eng. J. 430 (2022) 132702.
    [29]
    O. Sufiani, H. Tanaka, K. Teshima, R.L. Machunda, Y.A.C. Jande, Sep. Purif. Technol. 247 (2020) 116998.
    [30]
    P. Zhang, J. Li, M.B. Chan-Park, ACS Sustain. Chem. Eng. 8 (2020) 9291-9300.
    [31]
    K. Liu, B. Chen, A. Feng, J. Wu, X. Hu, J. Zhou, Y. Yu, Desalination 526 (2022) 115461.
    [32]
    L. Chang, Y. Fei, Y.H. Hu, J. Mater. Chem. A 9 (2021) 1429-1455.
    [33]
    C. Zhang, D. Wang, Z. Wang, G. Zhang, Z. Liu, J. Wu, J. Hu, G. Wen, Energy Environ. Mater. (2022) DOI: 10.1002/eem2.12276.
    [34]
    J. Han, L. Shi, T. Yan, J. Zhang, D. Zhang, Environ. Sci.: Nano 5 (2018) 2337-2345.
    [35]
    K. Sun, C. Wang, M. Tebyetekerwa, X.S. Zhao, Chem. Eng. J. 446 (2022) 137211.
    [36]
    J. Chen, K. Zuo, B. Li, J. Hu, W. Liu, D. Xia, L. Lin, J. Liang, X.-Y. Li, Chem. Eng. J. 433 (2022) 133781.
    [37]
    Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu, L. Xiang, C. Li, Y. Yamauchi, Y. Mai, Angew. Chem. Int. Ed. 60 (2021) 26528-26534.
    [38]
    Y. Xu, S. Xiang, H. Mao, H. Zhou, G. Wang, H. Zhang, H. Zhao, Nano Res. 14 (2021) 4878-4884.
    [39]
    D.V. Cuong, P.-C. Wu, N.-L. Liu, C.-H. Hou, Sep. Purif. Technol. 242 (2020) 116813.
    [40]
    C. Zhao, S. Zhang, N. Sun, H. Zhou, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Environ. Sci.: Water Res. Technol. 5 (2019) 1054-1063.
    [41]
    H. Wang, D. Wei, H. Gang, Y. He, H. Deng, L. Hou, Y. Shi, S. Wang, W. Yang, L. Zhang, ACS Sustain. Chem. Eng. 8 (2019) 1129-1136.
    [42]
    S. Wang, D Chen, Z Zhang, Y Hu, H Quan, Sep. Purif. Technol. 290 (2022) 120912.
    [43]
    X. Gong, W. Luo, N. Guo, S. Zhang, L. Wang, D. Jia, L. Ai, S. Feng, J. Mater. Chem. A 9 (2021) 18604-18613.
    [44]
    W. Xing, M. Zhang, J. Liang, W. Tang, P. Li, Y. Luo, N. Tang, J. Guo, Sep. Purif. Technol. 251 (2020) 117357.
    [45]
    S. Chaleawlert-Umpon, N. Pimpha, New J. Chem. 44 (2020) 12058-12067.
    [46]
    S. Huo, Y. Zhao, M. Zong, B. Liang, X. Zhang, I.U. Khan, K. Li, Electrochim. Acta 353 (2020) 136523.
    [47]
    D. Xu, Y. Tong, T. Yan, L. Shi, D. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 5810-5819.
    [48]
    R. He, M. Neupane, A. Zia, X. Huang, C. Bowers, M. Wang, J. Lu, Y. Yang, P. Dong, Adv. Funct. Mater. (2022) 2208040.
    [49]
    T. Lu, Y. Liu, X. Xu, L. Pan, A.A. Alothman, J. Shapter, Y. Wang, Y. Yamauchi, Sep. Purif. Technol. 256 (2021) 117771.
    [50]
    Z. Xie, X. Shang, K. Xu, J. Yang, B. Hu, P. Nie, W. Jiang, J. Liu, J. Electrochem. Soc. 166 (2019) E240-E247.
    [51]
    Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C.Q. Sun, L. Pan, Carbon 130 (2018) 377-383.
    [52]
    Z. Pei, J. Zhou, X. Xu, J. Liu, H. Wang, Y. Li, Q. Chen, Z. Sui, J. Porous Mat. 29 (2022) 415-422.
    [53]
    S. Wang, D. Chen, Z.-X. Zhang, Y. Hu, H. Quan, Sep. Purif. Technol. 290 (2022) 120912.
    [54]
    Y. Li, X. Xu, S. Hou, J. Ma, T. Lu, J. Wang, Y. Yao, L. Pan, Chem. Commun. 54 (2018) 14009-14012.
    [55]
    T. Schiros, D. Nordlund, L. Palova, L. Zhao, M. Levendorf, C. Jaye, D. Reichman, J. Park, M. Hybertsen, A. Pasupathy, ACS Nano 10 (2016) 6574-6584.
    [56]
    T. Zhu, S. Li, B. Ren, L. Zhang, L. Dong, L. Tan, J. Mater. Sci. 54 (2019) 9632-9642.
    [57]
    L. Wang, Z.-H. Huang, M. Yue, M. Li, M. Wang, F. Kang, Chem. Eng. J. 218 (2013) 232-237.
    [58]
    Y. Chen, J. Huang, Z. Chen, C. Shi, H. Yang, Y. Tang, Z. Cen, S. Liu, R. Fu, D. Wu, Adv. Sci. 9 (2022) 2103477.
    [59]
    C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu, K. Huang, Energy Environ. Sci. 10 (2017) 107-113.
    [60]
    H. Jiang, J. Ma, C. Li, Adv. Mater. 24 (2012) 4197-4202.
    [61]
    S. Wang, G. Wang, T. Wu, Y. Zhang, F. Zhan, Y. Wang, J. Wang, Y. Fu, J. Qiu, J. Mater. Chem. A 6 (2018) 14644-14650.
    [62]
    S. Huo, W. Ni, X. Song, M. Zhang, H. Wang, K. Li, Sep. Purif. Technol. 281 (2022) 119807.
    [63]
    W. Xia, J. Tang, J. Li, S. Zhang, K.C. Wu, J. He, Y. Yamauchi, Angew. Chem. Int. Ed. 58 (2019) 13354-13359.
    [64]
    Z. Li, J. Lin, B. Li, C. Yu, H. Wang, Q. Li, J. Energy Storage 44 (2021) 103437.
    [65]
    M. Mi, X. Liu, W. Kong, Y. Ge, W. Dang, J. Hu, Desalination 464 (2019) 18-24.
    [66]
    H. Wang, T. Yan, J. Shen, J. Zhang, L. Shi, D. Zhang, Environ. Sci.: Nano 7 (2020) 317-326.
    [67]
    Z. Wang, X. Xu, J. Kim, V. Malgras, R. Mo, C. Li, Y. Lin, H. Tan, J. Tang, L. Pan, Y. Bando, T. Yang, Y. Yamauchi, Mater. Horiz. 6 (2019) 1433-1437.
    [68]
    D. Deng, M.K. Luhasile, H. Li, Q. Pan, F. Zheng, Y. Wang, Desalination 531 (2022) 115685.
    [69]
    B. Li, X. Liu, A. Wang, C. Tan, K. Sun, L. Deng, M. Fan, J. Cui, J. Xue, J. Jiang, D. Yao, Desalination 539 (2022) 115955.
    [70]
    G. Liu, L. Qiu, H. Deng, J. Wang, L. Yao, L. Deng, Appl. Surf. Sci. 524 (2020) 146485.
    [71]
    J. Sun, J. Huang, L. E, C. Ma, Z. Wu, Z. Xu, S. Luo, W. Li, S. Liu, ACS Sustain. Chem. Eng. 8 (2020) 11114-11122.
    [72]
    N. Sun, Z. Li, X. Zhang, W. Qin, C. Zhao, H. Zhang, D.H.L. Ng, S. Kang, H. Zhao, G. Wang, ACS Sustain. Chem. Eng. 7 (2019) 8735-8743.
    [73]
    L. Cao, X. Liang, X. Ou, X. Yang, Y. Li, C. Yang, Z. Lin, M. Liu, Adv. Funct. Mater. 30 (2020) 1910732.
    [74]
    W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang, F. Lv, K. Wang, Q. Sun, S. Guo, Energy. Environ. Sci. 12 (2019) 1605-1612.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return