Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Shijie Yu, Xiaoxiao Yang, Qinghai Li, Yanguo Zhang, Hui Zhou. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy&Environment, 2023, 8(4): 1216-1227. doi: 10.1016/j.gee.2023.01.001
Citation: Shijie Yu, Xiaoxiao Yang, Qinghai Li, Yanguo Zhang, Hui Zhou. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy&Environment, 2023, 8(4): 1216-1227. doi: 10.1016/j.gee.2023.01.001

Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure

doi: 10.1016/j.gee.2023.01.001
  • Hydrothermal carbonization (HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption have limited the development of HTC technology. In conventional batch reactors, the temperature and pressure are typically coupled at saturated states. In this study, a decoupled temperature and pressure hydrothermal (DTPH) reaction system was developed to decrease the temperature of the HTC reaction of lignocellulosic biomass (rice straw and poplar leaves). The properties of hydrochars were analyzed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analyzer (TGA), etc. to propose the reaction mechanism. The results showed that the HTC reaction of lignocellulosic biomass could be realized at a low temperature of 200 ℃ in the DTPH process, breaking the temperature limit (230 ℃) in the conventional process. The DTPH method could break the barrier of the crystalline structure of cellulose in the lignocellulosic biomass with high cellulose content, realizing the carbonization of cellulose and hemicellulose with the dehydration, unsaturated bond formation, and aromatization. The produced hydrochar had an appearance of carbon microspheres, with high calorific values, abundant oxygen-containing functional groups, a certain degree of graphitization, and good thermal stability. Cellulose acts not only as a barrier to protect itself and hemicellulose from decomposition, but also as a key precursor for the formation of carbon microspheres. This study shows a promising method for synthesizing carbon materials from lignocellulosic biomass with a carbon-negative effect.

     

  • loading
  • [1]
    J.B. Zimmerman, P.T. Anastas, H.C. Erythropel, W. Leitner, Science 367 (2020) 397-400.
    [2]
    C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N. Mac Dowell, J.C. Minx, P. Smith, C.K. Williams, Nature 575 (2019) 87-97.
    [3]
    T. Gasser, C. Guivarch, K. Tachiiri, C.D. Jones, P. Ciais, Nat. Commun. 6 (2015) 7958.
    [4]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. (2022). 10.1016/j.gee.2022.07.003
    [5]
    R.D. Godinho, One Earth 5 (2022) 22-24.
    [6]
    X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang, Y. Wang, Chem. Soc. Rev. 49 (2020) 6198-6223.
    [7]
    C.H. Zhou, X. Xia, C.X. Lin, D.S. Tong, J. Beltramini, Chem. Soc. Rev. 40 (2011) 5588-5617.
    [8]
    S. Yu, L. Wang, Q. Li, Y. Zhang, H. Zhou, Mater. Today Sustain. 19 (2022) 100209.
    [9]
    W.-J. Liu, H.-Q. Yu, ACS Environ. Au 2 (2021) 98-114.
    [10]
    A.B. Ross, J.M. Jones, S. Chaiklangmuang, M. Pourkashanian, A. Williams, K. Kubica, J.T. Andersson, M. Kerst, P. Danihelka, K.D. Bartle, Fuel 81 (2002) 571-582.
    [11]
    A. Demirbas, Prog. Energy Combust. Sci. 31 (2005) 171-192.
    [12]
    M.M. Titirici, M. Antonietti, Chem. Soc. Rev. 39 (2010) 103-116.
    [13]
    X. Zhuang, J. Liu, L. Ma, Green Energy Environ. (2022). 10.1016/j.gee.2022.01.012
    [14]
    X. Zhu, M. He, Z. Xu, Z. Luo, B. Gao, R. Ruan, C.-H. Wang, K.-H. Wong, D.C.W. Tsang, Energy Convers. Manage. 266 (2022) 115855.
    [15]
    S. Yu, M. Xie, Q. Li, Y. Zhang, H. Zhou, J. Energy Inst. 103 (2022) 147-153.
    [16]
    M.F. Zulkornain, A.H. Shamsuddin, S. Normanbhay, J. Md Saad, Y.S. Zhang, S. Samsuri, W.A. Wan Ab Karim Ghani, Carbon Capture Sci. Technol. 1 (2021) 100014.
    [17]
    L. Fan, Z. Shi, Q. Ren, L. Yan, F. Zhang, L. Fan, Green Energy Environ. 6 (2021) 220-228.
    [18]
    S. Li, S.-H. Ho, T. Hua, Q. Zhou, F. Li, J. Tang, Green Energy Environ. 6 (2021) 644-659.
    [19]
    X. Guo, X. Zhang, Y. Wang, X. Tian, Y. Qiao, Green Energy Environ. 2022, 7, 1270-1280.
    [20]
    M. He, X. Zhu, S. Dutta, S.K. Khanal, K.T. Lee, O. Masek, D.C.W. Tsang, Bioresour. Technol. 344 (2022) 126395.
    [21]
    J. Liu, L. Yang, E. Shuang, C. Jin, C. Gong, K. Sheng, X. Zhang, Fuel 315 (2022) 123172.
    [22]
    M. Salimi, S. Balou, K. Kohansal, K. Babaei, A. Tavasoli, M. Andache, Energy Fuels 31 (2017) 12327-12338.
    [23]
    A.F. Qatarneh, C. Dupont, J. Michel, L. Simonin, A. Beda, C. Matei Ghimbeu, V. Ruiz-Villanueva, D. Da Silva, H. Piegay, M.J. Franca, Journal of Environmental Chemical Engineering 9 (2021) 106604.
    [24]
    W. Wagner, A. Pruss, 31 (2002) 387-535.
    [25]
    A. Kruse, D. Baris, N. Troger, P. Wieczorek, Sustainable carbon materials from hydrothermal processes (2013) 341-353.
    [26]
    G.H. Vogel, Process development: from the initial idea to the chemical production plant, John Wiley & Sons, 2005.
    [27]
    M. Heidari, A. Dutta, B. Acharya, S. Mahmud, J. Energy Inst. 92 (2019) 1779-1799.
    [28]
    P.E. Savage, R.B. Levine, C.M. Huelsman, in Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, ed. Crocker, M., 2010, pp. 192-221.
    [29]
    A.A. Peterson, F. Vogel, R.P. Lachance, M. Froling, M.J. Antal, J.W. Tester, Energy Environ. Sci. 1 (2008) 32-65.
    [30]
    D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Chem. Soc. Rev. 41 (2012) 8075-8098.
    [31]
    S. Yu, X. Yang, P. Zhao, Q. Li, H. Zhou, Y. Zhang, J. Energy Inst. 101 (2022) 194-200.
    [32]
    T.A. Khan, A.S. Saud, S.S. Jamari, M.H.A. Rahim, J.-W. Park, H.-J. Kim, Biomass Bioenergy 130 (2019) 105384.
    [33]
    M. Sevilla, A.B. Fuertes, Carbon 47 (2009) 2281-2289.
    [34]
    J. Yoon, S. Sim, A.A. Myint, Y.W. Lee, J. Supercrit. Fluids 135 (2018) 145-151.
    [35]
    T.F. Wang, Y.B. Zhai, Y. Zhu, C.T. Li, G.M. Zeng, Renew. Sustain. Energ. Rev. 90 (2018) 223-247.
    [36]
    S. Yu, X. Dong, P. Zhao, Z. Luo, Z. Sun, X. Yang, Q. Li, L. Wang, Y. Zhang, H. Zhou, Nat. Commun. 13 (2022) 3616.
    [37]
    C. Falco, N. Baccile, M.M. Titirici, Green Chem. 13 (2011) 3273-3281.
    [38]
    M.-M. Titirici, M. Antonietti, N. Baccile, Green Chem. 10 (2008) 1204-1212.
    [39]
    K.C. Sheng, S. Zhang, J.L. Liu, S. E, C.D. Jin, Z.H. Xu, X.M. Zhang, J. Cleaner Prod. 237 (2019) 117831.
    [40]
    J. Deng, T.Y. Xiong, H.Y. Wang, A.M. Zheng, Y. Wang, ACS Sustainable Chem. Eng. 4 (2016) 3750-3756.
    [41]
    S. Deguchi, K. Tsujii, K. Horikoshi, Green Chem. 10 (2008) 191-196.
    [42]
    B. Lindman, G. Karlstrom, L. Stigsson, J. Mol. Liq. 156 (2010) 76-81.
    [43]
    B. Medronho, B. Lindman, Current Opinion in Colloid & Interface Science 19 (2014) 32-40.
    [44]
    D. Kim, K. Lee, K.Y. Park, J. Ind. Eng. Chem. 42 (2016) 95-100.
    [45]
    S.A. Channiwala, P.P. Parikh, Fuel 81 (2002) 1051-1063.
    [46]
    G. Beamson, D. Briggs, High resolution XPS of organic polymers: the scienta ESCA300 database, Wiley, 1992.
    [47]
    L. Segal, J.J. Creely, A. Martin Jr, C.J.T.R.J. Conrad, Text. Res. J. 29 (1959) 786-794.
    [48]
    A. Lorente, J. Remon, M. Salgado, A.J. Huertas-Alonso, P. Sanchez-Verdu, A. Moreno, J.H. Clark, ACS Sustainable Chem. Eng. 8 (2020) 18982-18991.
    [49]
    H.V. Scheller, P. Ulvskov, in Annual Review of Plant Biology, Vol 61, eds. Merchant, S.; Briggs, W. R.; Ort, D., 2010, vol. 61, pp. 263-289.
    [50]
    F.M. Girio, C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques, R. Bogel-Lukasik, Bioresour. Technol. 101 (2010) 4775-4800.
    [51]
    T. Evcil, H. Simsir, S. Ucar, K. Tekin, S. Karagoz, Fuel 279 (2020).
    [52]
    J. Ibarra, E. Munoz, R. Moliner, Org. Geochem. 24 (1996) 725-735.
    [53]
    A.C. Lua, T. Yang, J. Colloid Interface Sci. 274 (2004) 594-601.
    [54]
    S. Yu, P. Zhao, X. Yang, Q. Li, Y. Zhang, H. Zhou, Fuel 326 (2022) 124997.
    [55]
    X. Sun, Y. Li, Angew. Chem. Int. Ed. 116 (2004) 607-611.
    [56]
    H.R. Holgate, J.C. Meyer, J.W. Tester, AlChE J. 41 (1995) 637-648.
    [57]
    S. Yu, P. Zhao, X. Yang, Q. Li, B.A. Mohamed, J.M. Saad, Y. Zhang, H. Zhou, J. Anal. Appl. Pyrolysis 166 (2022) 105627.
    [58]
    S. Nizamuddin, S.S. Qureshi, H.A. Baloch, M.T.H. Siddiqui, P. Takkalkar, N.M. Mubarak, D.K. Dumbre, G.J. Griffin, S. Madapusi, A. Tanksale, Materials 12 (2019).
    [59]
    J. Banuls-Ciscar, M.L. Abel, J.F. Watts, Surf. Sci. Spectra 23 (2016) 1-8.
    [60]
    M.N. Belgacem, G. Czeremuszkin, S. Sapieha, A. Gandini, Cellulose 2 (1995) 145-157.
    [61]
    F.-X. Collard, J. Blin, Renewable Sustainable Energy Rev. 38 (2014) 594-608.
    [62]
    M. Sevilla, A.B. Fuertes, Chem.-Eur. J. 15 (2009) 4195-4203.
    [63]
    F. Tomul, Y. Arslan, B. Kabak, D. Trak, E. Kenduzler, E.C. Lima, H.N. Tran, Sci. Total Environ. 726 (2020) 137828.
    [64]
    Z. Zhang, Z. Zhu, B. Shen, L. Liu, Energy 171 (2019) 581-598.
    [65]
    J. Deng, X. Li, X. Wei, Y. Liu, J. Liang, B. Song, Y. Shao, W. Huang, Chem. Eng. J. 387 (2020) 124097.
    [66]
    F. Safari, O. Norouzi, A. Tavasoli, Bioresour. Technol. 222 (2016) 232-241.
    [67]
    A.C. Ferrari, J. Robertson, Physical Review B 61 (2000) 14095-14107.
    [68]
    J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys. 80 (1996) 440-447.
    [69]
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401.
    [70]
    G. Ischia, M. Cutillo, G. Guella, N. Bazzanella, M. Cazzanelli, M. Orlandi, A. Miotello, L. Fiori, Chem. Eng. J. 449 (2022) 137827.
    [71]
    A.B. Brown, B.J. Mckeogh, G.A. Tompsett, R. Lewis, N.A. Deskins, M.T. Timko, Carbon 125 (2017) 614-629.
    [72]
    M. Sasaki, M. Furukawa, K. Minami, T. Adschiri, K. Arai, Ind. Eng. Chem. Res. 41 (2002) 6642-6649.
    [73]
    S. Deguchi, K. Tsujii, K. Horikoshi, Chem. Commun. (2006) 3293-3295.
    [74]
    S.M. Kang, X.L. Li, J. Fan, J. Chang, Renew. Sustain. Energ. Rev. 27 (2013) 546-558.
    [75]
    A.E. Zavadskii, Fibre Chem. 36 (2004) 425-430.
    [76]
    Y. Xu, L. Hu, H. Huang, D. Tong, C. Hu, Carbohydr. Polym. 88 (2012) 1342-1347.
    [77]
    J.L. Wen, S.L. Sun, T.Q. Yuan, F. Xu, R.C. Sun, Applied Energy 121 (2014) 1-9.
    [78]
    H. Zhou, Combustible solid waste thermochemical conversion: a study of interactions and influence factors, Springer, 2017.
    [79]
    H. Zhou, Y.Q. Long, A.H. Meng, Q.H. Li, Y.G. Zhang, Thermochim. Acta 566 (2013) 36-43.
    [80]
    H. Zhou, Y. Long, A. Meng, Q. Li, Y. Zhang, J. Anal. Appl. Pyrolysis 111 (2015) 265-271.
    [81]
    K.-M. Hansson, J. Samuelsson, C. Tullin, L.-E. Amand, Combust. Flame 137 (2004) 265-277.
    [82]
    Shafizad.F, Y.L. Fu, Carbohydr. Res. 29 (1973) 113-122.
    [83]
    H.N. Tran, F. Tomul, N. Thi Hoang Ha, D.T. Nguyen, E.C. Lima, G.T. Le, C.-T. Chang, V. Masindi, S.H. Woo, J. Hazard. Mater. 394 (2020) 122255.
    [84]
    A. Khosravi, H. Zheng, Q. Liu, M. Hashemi, Y. Tang, B. Xing, Chem. Eng. J. 430 (2022) 133142.
    [85]
    H.B. Sharma, A.K. Sarmah, B. Dubey, Renewable Sustainable Energy Rev. 123 (2020) 109761.
    [86]
    Y. Cao, M. He, S. Dutta, G. Luo, S. Zhang, D.C.W. Tsang, Renewable Sustainable Energy Rev. 152 (2021) 111722.
    [87]
    M. He, Y. Cao, Z. Xu, S. You, R. Ruan, B. Gao, K.-H. Wong, D.C.W. Tsang, Bioresour. Technol. 361 (2022) 127694.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (286) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return