Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Jianzhi Xu, Liping Duan, Jiaying Liao, Haowei Tang, Jun Lin, Xiaosi Zhou. KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries. Green Energy&Environment, 2023, 8(5): 1469-1478. doi: 10.1016/j.gee.2022.12.007
Citation: Jianzhi Xu, Liping Duan, Jiaying Liao, Haowei Tang, Jun Lin, Xiaosi Zhou. KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries. Green Energy&Environment, 2023, 8(5): 1469-1478. doi: 10.1016/j.gee.2022.12.007

KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries

doi: 10.1016/j.gee.2022.12.007
  • KVPO4F (KVPF) has been extensively investigated as the potential cathode material for potassium-ion batteries (PIBs) owing to its high theoretical capacity, superior operating voltage, and three-dimensional K+ conduction pathway. Nevertheless, the electrochemical behavior of KVPF is limited by the inherent poor electronic conductivity of the phosphate framework and unstable electrode/electrolyte interface. To address the above issues, this work proposes an infiltration-calcination method to confine the in-situ grown KVPF into the mesoporous carbon CMK-3 (denoted KVPF@CMK-3). The assembled KVPF@CMK-3 nanocomposite features three-dimensional interconnected carbon channels, which not only offer abundant active sites and significantly accelerate K+/electron transport, but also prevent the growth of KVPF nanoparticle agglomerates, hence stabilizing the structure of the material. Additionally, V-F-C bonds are created at the interface of KVPF and CMK-3, which reduce the loss of F and stabilize the electrode interface. Thus, when tested as a cathode material for PIBs, the KVPF@CMK-3 nanocomposite delivers superior reversible capacitiy (103.2 mAh g−1 at 0.2 C), outstanding rate performance (90.1 mAh g−1 at 20 C), and steady cycling performance (92.2 mAh g−1 at 10 C and with the retention of 88.2% after 500 cycles). Moreover, its potassium storage mechanism is further examined by ex-situ XRD and ex-situ XPS techniques. The above synthetic strategy demonstrates the potential of KVPF@CMK-3 to be applied as the cathode for PIBs.

     

  • loading
  • [1]
    Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Nat. Nanotechnol. 14 (2019) 200-207.
    [2]
    G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature 575 (2019) 75-86.
    [3]
    L. Fan, Z. Shi, Q. Ren, L. Yan, F. Zhang, L. Fan, Green Energy Environ. 6 (2021) 220-228.
    [4]
    Z. Zhang, Y. Du, Q.C. Wang, J. Xu, Y.N. Zhou, J. Bao, J. Shen, X. Zhou, Angew. Chem. Int. Ed. 59 (2020) 17504-17510.
    [5]
    K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg, Y. Gofer, J.-S. Kim, E. Yang, C.S. Park, J.-S. Kim, S.-S. Lee, W.-S. Chang, S.-G. Doo, Y.N. Jo, Y. Jung, D. Aurbach, J.W. Choi, Nano Lett. 15 (2015) 4071-4079.
    [6]
    Z. Li, X. Mu, Z. Zhao-Karger, T. Diemant, R.J. Behm, C. Kubel, M. Fichtner, Nat. Commun. 9 (2018) 5115.
    [7]
    S.K. Das, Angew. Chem. Int. Ed. 57 (2018) 16606-16617.
    [8]
    X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, Adv. Energy Mater. 6 (2016) 1502588.
    [9]
    C. Hu, K. Ma, Y. Hu, A. Chen, P. Saha, H. Jiang, C. Li, Green Energy Environ. 6 (2021) 75-82.
    [10]
    J. Xu, S. Dou, X. Cui, W. Liu, Z. Zhang, Y. Deng, W. Hu, Y. Chen, Energy Storage Mater. 34 (2021) 85-106.
    [11]
    B. Peng, Y. Li, J. Gao, F. Zhang, J. Li, G. Zhang, J. Power Sources 437 (2019) 226913.
    [12]
    Y. Du, Z. Zhang, Y. Xu, J. Bao, X. Zhou, Acta Phys. -Chim. Sin. 38 (2022) 2205017.
    [13]
    Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang, N. Guo, D. Li, Z. Ju, S. Xiong, Adv. Mater. 34 (2022) 2108621.
    [14]
    M. Huang, B. Xi, L. Mi, Z. Zhang, W. Chen, J. Feng, S. Xiong, Small 18 (2022) 2107819.
    [15]
    J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, Adv. Energy Mater. 7 (2017) 1702942.
    [16]
    L. Deng, J. Qu, X. Niu, J. Liu, J. Zhang, Y. Hong, M. Feng, J. Wang, M. Hu, L. Zeng, Q. Zhang, L. Guo, Y. Zhu, Nat. Commun. 12 (2021) 2167.
    [17]
    J. Wang, B. Wang, X. Liu, J. Bai, H. Wang, G. Wang, Chem. Eng. J. 382 (2020) 123050.
    [18]
    S. Zhao, Z. Guo, K. Yan, X. Guo, S. Wan, F. He, B. Sun, G. Wang, Small Struct. 2 (2020) 2000054.
    [19]
    L. Duan, J. Xu, Y. Xu, R. Tian, Y. Sun, C. Zhu, X. Mo, X. Zhou, J. Energy Chem. 76 (2023) 332–338.
    [20]
    X. Zhao, L.-Z. Fan, Z. Zhou, Green Energy Environ. 6 (2021) 455-457.
    [21]
    H. Yu, S. Wang, Y. Hu, G. He, L.Q. Bao, I.P. Parkin, H. Jiang, Green Energy Environ. 7 (2022) 266-274.
    [22]
    X.X. Luo, W.H. Li, H.J. Liang, H.X. Zhang, K.D. Du, X.T. Wang, X.F. Liu, J.P. Zhang, X.L. Wu, Angew. Chem. Int. Ed. 61 (2022) e202117661.
    [23]
    M. Tang, Y. Wu, Y. Chen, C. Jiang, S. Zhu, S. Zhuo, C. Wang, J. Mater. Chem. A 7 (2019) 486-492.
    [24]
    G.-P. Yang, X.-X. Luo, Y.-F. Liu, K. Li, X.-L. Wu, ACS Appl. Mater. Inter. 13 (2021) 46902-46908.
    [25]
    C. Chen, T. Li, H. Tian, Y. Zou, J. Sun, J. Mater. Chem. A 7 (2019) 18451-18457.
    [26]
    J. Liao, C. Chen, Q. Hu, Y. Du, Y. He, Y. Xu, Z. Zhang, X. Zhou, Angew. Chem. Int. Ed. 60 (2021) 25575-25582.
    [27]
    P. Barpanda, S.-i. Nishimura, A. Yamada, Adv. Energy Mater. 2 (2012) 841-859.
    [28]
    M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu, X. Yang, X.-L. Wu, Green Energy Environ. 7 (2022) 763-771.
    [29]
    R. Lian, D. Wang, X. Ming, R. Zhang, Y. Wei, J. Feng, X. Meng, G. Chen, J. Mater. Chem. A 6 (2018) 16228-16234.
    [30]
    H. Kim, D.-H. Seo, M. Bianchini, R.J. Clement, H. Kim, J.C. Kim, Y. Tian, T. Shi, W.-S. Yoon, G. Ceder, Adv. Energy Mater. 8 (2018) 1801591.
    [31]
    H. Kim, Y. Ishado, Y. Tian, G. Ceder, Adv. Funct. Mater. 29 (2019) 1902392.
    [32]
    Z. Liu, J. Wang, B. Lu, Sci. Bull. 65 (2020) 1242-1251.
    [33]
    H. Li, J. Dong, D. Han, J. Hu, X. Li, F. Kang, D. Zhai, ACS Appl. Energy Mater. 4 (2020) 445-451.
    [34]
    J. Liao, X. Zhang, Q. Zhang, Q. Hu, Y. Li, Y. Du, J. Xu, L. Gu, X. Zhou, Nano Lett. 22 (2022) 4933-4940.
    [35]
    Q. Ma, L. Song, Y. Wan, K. Dong, Z. Wang, D. Wang, H. Sun, S. Luo, Y. Liu, J. Mater. Sci. Technol. 94 (2021) 123-129.
    [36]
    Z. Wang, K. Dong, D. Wang, S. Luo, X. Liu, Y. Liu, Q. Wang, Y. Zhang, A. Hao, C. He, C. Shi, N. Zhao, Chem. Eng. J. 384 (2020) 123327.
    [37]
    K. Liang, S. Wang, H. Zhao, X. Huang, Y. Ren, Z. He, J. Mao, J. Zheng, Chem. Eng. J. 428 (2022) 131780.
    [38]
    J. Liao, Q. Hu, X. He, J. Mu, J. Wang, C. Chen, J. Power Sources 451 (2020) 227739.
    [39]
    X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater, 8 (2009) 500-506.
    [40]
    X. Zhou, L.J. Wan, Y.G. Guo, Nanoscale 4 (2012) 5868-5871.
    [41]
    Y. Liu, Y.-X. Lu, Y.-S. Xu, Q.-S. Meng, J.-C. Gao, Y.-G. Sun, Y.-S. Hu, B.-B. Chang, C.-T. Liu, A.-M. Cao, Adv. Mater. 32 (2020) 2000505.
    [42]
    Q. Deng, F. Zheng, W. Zhong, Q. Pan, Y. Liu, Y. Li, G. Chen, Y. Li, C. Yang, M. Liu, Chem. Eng. J. 392 (2020) 123735.
    [43]
    K. Wang, P. Yan, M. Sui, Nano Energy 54 (2018) 148-155.
    [44]
    C.-H. Jo, J.-H. Jo, H. Yashiro, S.-J. Kim, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 8 (2018) 1702942.
    [45]
    A. Mukhopadhyay, B.W. Sheldon, Prog. Mater. Sci. 63 (2014) 58-116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (223) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return