Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Peng Jiang, Guanhan Zhao, Hao Zhang, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources. Green Energy&Environment, 2024, 9(6): 1068-1078. doi: 10.1016/j.gee.2022.12.004
Citation: Peng Jiang, Guanhan Zhao, Hao Zhang, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources. Green Energy&Environment, 2024, 9(6): 1068-1078. doi: 10.1016/j.gee.2022.12.004

Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources

doi: 10.1016/j.gee.2022.12.004
  • Acetylene is produced from the reaction between calcium carbide (CaC2) and water, while the production of CaC2 generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC2 synthesis is from coal. Here, a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis, oxygen-thermal CaC2 fabrication and calcium looping. For comparison, a coal-to-acetylene process was also established by using coal as feedstock. The carbon efficiency, energy efficiency and environmental impacts of the bio-based calcium carbide acetylene (BCCA) and coal-based calcium carbide acetylene (CCCA) processes were systematically analyzed. Moreover, the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC2 furnace. Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process, life cycle assessment demonstrated the BCCA (1.873 kgCO2eq kg-prod-1) a lower carbon footprint process which is 0.366 kgCO2eq kg-prod-1 lower compared to the CCCA process. With sustainable energy (biomass power) substitution in CaC2 furnace, an even lower GWP value of 1.377 kgCO2eq kg-prod-1 can be achieved in BCCA process. This work performed a systematic analysis on integrating biomass into industrial acetylene production, and revealed the positive role of biomass as raw material (carbon) and energy supplier.

     

  • loading
  • [1]
    K. S. Rodygin, K. A. Lotsman, V. P. Ananikov, ChemSusChem 13 (2020) 3679-3685.
    [2]
    S. A. Metlyaeva, K. S. Rodygin, K. A. Lotsman, D. E. Samoylenko, V. P. Ananikov, Green Chem. 23 (2021) 2487-2495.
    [3]
    B. Wang, C. Jin, S. Shao, Y. Yue, Y. Zhang, S. Wang, R. Chang, H. Zhang, J. Zhao, X. Li, Green Energy Environ. In Press (2022). https://doi.org/10.1016/j.gee.2022.01.005.
    [4]
    Z. Lin, D. Yu, Y. N. Sum, Y. Zhang, ChemSusChem 5 (2012) 625-628.
    [5]
    Z. Sun, S. Chen, S. Ma, W. Xiang, Q. Song, Appl. Energ. 169 (2016) 642-651.
    [6]
    H. Huo, X. Liu, Z. Wen, G. Lou, R. Dou, F. Su, J. Fang, Z. Jiang, J. Cleaner Prod. 360 (2022) 132176.
    [7]
    G. Li, Q. Liu, Z. Liu, Z. C. Zhang, C. Li, W. Wu, Angew. Chem. Int. Ed. 122 (2010) 8658-8661.
    [8]
    X. Gong, T. Zhang, J. Zhang, Z. Wang, J. Liu, J. Cao, C. Wang, Renewable Sustainable Energy Rev. 159 (2022) 112133.
    [9]
    Y. Li, S. Li, X. Xu, H. Meng, Y. Lu, C. Li, Green Energy Environ. In Press (2021). https://doi.org/10.1016/j.gee.2021.04.007.
    [10]
    Y. Mi, D. Zheng, X. Jiang, J. Cleaner Prod. 112 (2016) 1676-1682.
    [11]
    G. Zhai, Q. Wang, F. Liu, Z. Hu, C. Jia, D. Li, H. Xiang, M. Zhu, Green Energy Environ. In Press (2022). https://doi.org/10.1016/j.gee.2021.04.007.
    [12]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, Green Energy Environ. In Press (2022). https://doi.org/10.1016/j.gee.2022.07.003.
    [13]
    Y. Mi, D. Zheng, J. Guo, X. Chen, P. Jin, Fuel Process. Technol. 119 (2014) 305-315.
    [14]
    H. Huo, X. Liu, Z. Wen, G. Lou, R. Dou, F. Su, W. Zhou, Z. Jiang, Energy 228 (2021) 120566.
    [15]
    R. C. Pillai, E. M. Sabolsky, S. L. Rowan, I. B. Celik, S. Morrow, Ind. Eng. Chem. Res. 54 (2015) 11001-11010.
    [16]
    M. Li, S. Chen, H. Dai, H. Zhao, B. Jiang, Molecules 26 (2021) 2568.
    [17]
    C. Zhu, G. Zhao, V. Hlavacek, J. Mater. Sci. 30 (1995) 2412-2419.
    [18]
    R. Li, S. Ma, H. Ma, S. Liu, H. Wang, Appl. Therm. Eng. 181 (2020) 115877.
    [19]
    S. Ma, S. Lu, H. Ma, R. Li, C. Xu, M. Chen, H. Zhang, Fuel Process. Technol. 226 (2021) 107070.
    [20]
    C. S. Kim, R. F. Baddour, J. B. Howard, H. P. Meissner, Ind. Eng. Chem. Process Des. Dev. 18 (1979) 323-328.
    [21]
    T. Zhang, G. Chu, J. Lyu, Y. Cao, W. Xu, K. Ma, L. Song, H. Yue, B. Liang, Chin. J. Chem. Eng. 43 (2022) 86-98.
    [22]
    К. Родыгин, Ю. Гырдымова, В. Анаников, Russ. Chem. Rev. 91 (2022) 7.
    [23]
    D. Cui, Z. Deng, Z. Liu, Appl. Energ. 254 (2019) 113537.
    [24]
    K. S. Rodygin, Y. A. Vikenteva, V. P. Ananikov, ChemSusChem 12 (2019) 1483-1516.
    [25]
    Z. Li, Z. Liu, R. Wang, X. Guo, Q. Liu, Chem. Eng. Sci. 192 (2018) 516-525.
    [26]
    K. S. Rodygin, K. A. Lotsman, D. E. Samoylenko, V. M. Kuznetsov, V. P. Ananikov, Int. J. Mol. Sci. 23 (2022) 11828.
    [27]
    Y.-B. Li, H.-Y. Guo, C.-Q. Deng, J. Deng, Green Energy Environ. 7 (2020).
    [28]
    A. Paakkonen, H. Tolvanen, L. Kokko, Biomass Bioenergy 120 (2019) 40-48.
    [29]
    M. Gonzalez-Castano, C. Morales, J. N. de Miguel, J. Boelte, O. Klepel, J. Flege, H. Arellano-Garcia, Green Energy Environ. In Press (2021). https://doi.org/10.1016/j.gee.2021.05.007.
    [30]
    L. Liu, P. Jiang, H. Qian, L. Mu, X. Lu, J. Zhu, Appl. Energ. 311 (2022) 118685.
    [31]
    L. Liu, H. Qian, L. Mu, J. Wu, X. Feng, X. Lu, J. Zhu, Bioresour. Technol. 319 (2021) 124108.
    [32]
    S. Li, S.-H. Ho, T. Hua, Q. Zhou, F. Li, J. Tang, Green Energy Environ. 6 (2021) 644-659.
    [33]
    Z. Suisui, L. Jingying, L. Gang, N. Yan, Q. Luyao, B. Boyang, M. Xiaoxun, J. Cleaner Prod. 322 (2021) 129055.
    [34]
    P. Jiang, G. Zhao, L. Liu, H. Zhang, L. Mu, X. Lu, J. Zhu, Bioresour. Technol. 351 (2022) 127004.
    [35]
    A. Roine, Chemical Reaction and Equilibrium Software with extensive Ther-mochemical Database (1994). https://cir.nii.ac.jp/crid/1573950399100051968.
    [36]
    R. Long, J. Hildebrand, W. Morrell, Aspen Physical Property System (2008) 72. https://dlscrib.com/download/aspen-physical-property-system-physical-property-models_58d43e3bdc0d60c638c34616_pdf.
    [37]
    I. J. Okeke, T. A. Adams II, Energy 163 (2018) 426-442.
    [38]
    L. Heng, H. Zhang, J. Xiao, R. Xiao, ACS Sustain. Chem. Eng. 6 (2018) 2733-2740.
    [39]
    Y. Liao, S.-F. Koelewijn, G. Van den Bossche, J. Van Aelst, S. Van den Bosch, T. Renders, K. Navare, T. Nicolai, K. Van Aelst, M. Maesen, Science 367 (2020) 1385-1390.
    [40]
    M. Hillestad, M. Ostadi, G. A. Serrano, E. Rytter, B. Austboe, J. Pharoah, O. S. Burheim, Fuel 234 (2018) 1431-1451.
    [41]
    A. Poluzzi, G. Guandalini, M. C. Romano, Biomass Bioenergy 142 (2020) 105618.
    [42]
    C. A. Garcia-Velasquez, C. A. Cardona, Energy 172 (2019) 232-242.
    [43]
    Q. Yang, H. Zhou, P. Bartocci, F. Fantozzi, O. Masek, F. A. Agblevor, Z. Wei, H. Yang, H. Chen, X. Lu, Nat. Commun. 12 (2021) 1-12.
    [44]
    B.-H. Cheng, B.-C. Huang, R. Zhang, Y.-L. Chen, S.-F. Jiang, Y. Lu, X.-S. Zhang, H. Jiang, H.-Q. Yu, Sci. Adv. 6 (2020) eaay0748.
    [45]
    C. Wang, Y. Chang, L. Zhang, Y. Chen, M. Pang, Energy 158 (2018) 121-127.
    [46]
    J. He, Y. Liu, B. Lin, Energy 163 (2018) 416-425.
    [47]
    E. Dorr, M. Koegler, B. Gabrielle, C. Aubry, J. Cleaner Prod. 288 (2021) 125668.
    [48]
    T. Wei, S. Chen, Appl. Energ. 277 (2020) 115554.
    [49]
    W.-J. Liu, W.-W. Li, H. Jiang, H.-Q. Yu, Chem. Rev. 117 (2017) 6367-6398.
    [50]
    G. He, D. S. Mallapragada, A. Bose, C. F. Heuberger-Austin, E. Gencer, Energy Environ. Sci. 14 (2021) 4635-4646.
    [51]
    M. M. El-Dalatony, E.-S. Salama, M. B. Kurade, K.-Y. Kim, S. P. Govindwar, J. R. Kim, E. E. Kwon, B. Min, M. Jang, S.-E. Oh, Chem. Eng. J. 360 (2019) 797-805.
    [52]
    J. Lee, T. Lee, J. Jeong, J. Jeong, Constr. Build. Mater. 267 (2021) 120932.
    [53]
    H. Peng, Z. Di, P. Gong, F. Yang, F. Cheng, Green Energy Environ. In Press (2022). https://doi.org/10.1016/j.gee.2022.02.012.
    [54]
    D. Zhang, Q. Zhang, S. Qi, J. Huang, V. J. Karplus, X. Zhang, Nat. Clim. Change 9 (2019) 164-169.
    [55]
    Q. Yue, S. Li, X. Hu, Y. Zhang, M. Xue, H. Wang, Energy Technol. 7 (2019) 1900365.
    [56]
    S. Verma, S. Lu, P. J. Kenis, Nat. Energy 4 (2019) 466-474.
    [57]
    G. Fambri, C. Diaz-Londono, A. Mazza, M. Badami, T. Sihvonen, R. Weiss, Appl. Energ. 312 (2022) 118743.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return