Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Xixi Zhang, Xiaoke Wang, Guangmeng Qu, Tairan Wang, Xiliang Zhao, Jun Fan, Cuiping Han, Xijin Xu, Chunyi Zhi, Hongfei Li. Reversible solid-liquid conversion enabled by self-capture effect for stable non-flow zinc-bromine batteries. Green Energy&Environment, 2024, 9(6): 1035-1044. doi: 10.1016/j.gee.2022.11.007
Citation: Xixi Zhang, Xiaoke Wang, Guangmeng Qu, Tairan Wang, Xiliang Zhao, Jun Fan, Cuiping Han, Xijin Xu, Chunyi Zhi, Hongfei Li. Reversible solid-liquid conversion enabled by self-capture effect for stable non-flow zinc-bromine batteries. Green Energy&Environment, 2024, 9(6): 1035-1044. doi: 10.1016/j.gee.2022.11.007

Reversible solid-liquid conversion enabled by self-capture effect for stable non-flow zinc-bromine batteries

doi: 10.1016/j.gee.2022.11.007
  • Non-flow aqueous zinc-bromine batteries without auxiliary components (e.g., pumps, pipes, storage tanks) and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage. Unfortunately, they generally suffer from serious diffusion and shuttle of polybromide (Br-, Br3-) due to the weak physical adsorption between soluble polybromide and host carbon materials, which results in low energy efficiency and poor cycling stability. Here, we develop a novel self-capture organic bromine material (1,1'-bis [3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine, NVBr4) to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications. The quaternary ammonium groups (NV4+ ions) can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes, which transforms the conventional “liquid-liquid” conversion of soluble bromide components into “liquid-solid” model and effectively suppresses the shuttle effect. Thereby, the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g-1 (1 A g-1), excellent rate capability (200 mAh g-1 at 20 A g-1), outstanding energy density of 469.6 Wh kg-1 and super-stable cycle life (20,000 cycles with 100% Coulombic efficiency), which outperforms most of reported zinc-halogen batteries. Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect. The developed strategy can be extended to other halogen batteries to obtain stable charge storage.

     

  • loading
  • [1]
    B. Yong, D. Ma, Y. Wang, H. Mi, C. He, P. Zhang, Adv. Energy Mater. 45 (2020) 2002354.
    [2]
    J. Hao, L. Yuan, B. Johannessen, Y. Zhu, Y. Jiao, C. Ye, F. Xie, S. Z. Qiao, Angew. Chem. Int. Ed. 133 (2021) 25318-25325.
    [3]
    X. Li, N. Li, Z. Huang, Z. Chen, Y. Zhao, G. Liang, Q. Yang, M. Li, Q. Huang, B. Dong, ACS Nano 15 (2021) 1718-1726.
    [4]
    Y. Yin, Z. Yuan, X. Li, Phys. Chem. Chem. Phys. 23 (2021) 26070.
    [5]
    L. Tang, W. Lu, H. Zhang, X. Li, Energy Mater. Adv. 2022 (2022) Doi: 10.34133/2022/9850712.
    [6]
    H. X. Xiang, A. D. Tan, J. H. Piao, Z. Y. Fu, Z. X. Liang, Small 15 (2019) 1901848.
    [7]
    Q. Lai, H. Zhang, X. Li, L. Zhang, Y. Cheng, J. Power Sources 235 (2013) 1-4.
    [8]
    C. Wang, Q. Lai, P. Xu, D. Zheng, X. Li, H. Zhang, Adv. Mater. 29 (2017) 1605815.
    [9]
    L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng, Y. Shao, X. Liang, iScience 23 (2020) 101348.
    [10]
    S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan, K. W. Knehr, A. G. Hsieh, X. Yang, B. E. Koel, D. A. Steingart, Energy Environ. Sci. 10 (2017) 114-120.
    [11]
    Y. Zhao, Y. Ding, Y. Li, L. Peng, H. R. Byon, J. B. Goodenough, G. Yu, Chem. Soc. Rev. 44 (2015) 7968-7996.
    [12]
    B. Evanko, S. J. Yoo, J. Lipton, S.-E. Chun, M. Moskovits, X. Ji, S. W. Boettcher, G. D. Stucky, Energy Environ. Sci. 11 (2018) 2865-2875.
    [13]
    C. Wang, X. Li, X. Xi, W. Zhou, Q. Lai, H. Zhang, Nano Energy 21 (2016) 217-227.
    [14]
    Y. T. Wu, P. Huang, J. D. Howe, Y. Yan, J. Martinez, A. Marianchuk, Y. Zhang, H Chen, N. Liu, Angew. Chem. Int. Ed. 58 (2019) 15228-15234.
    [15]
    Z. Yuan, Y. Yin, C. Xie, H. Zhang, Y. Yao, X. F. Li, Adv. Mater. 31 (2019) 1902025.
    [16]
    X. Li, N. Li, Z. Huang, Z. Chen, G. Liang, Q. Yang, M. Li, Y. Zhao, L. Ma, B. Dong, Adv. Mater. 33 (2021) 2006897.
    [17]
    M. Xing, Z. Zhao, Y. Zhang, J. Zhao, G. Cui, J. Dai, Mater. Today Energy 2020, 18, 100534.
    [18]
    K. Lu, Z. Hu, J. Ma, H. Ma, L. Dai, J. Zhang, Nat. Commun. 8 (2017) 1-10.
    [19]
    J. Lee, P. Srimuk, S. Fleischmann, A. Ridder, M. Zeiger, V. Presser, J. Mater. Chem. A 5 (2017) 12520-12527.
    [20]
    Z. Meng, H. Tian, S. Zhang, X. Yan, H. Ying, W. He, C. Liang, W. Zhang, X. Hou, W.-Q. Han, ACS Appl. Mater. Interfaces 10 (2018) 17933-17941.
    [21]
    H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao, G. Li, X. S. Li, K. S. Han, K. T. Mueller, V. Sprenkle, ACS Energy Lett. 2 (2017) 2674-2680.
    [22]
    S. Sun, B. Liu, H. Zhang, Q. Guo, Q. Xia, T. Zhai, H. Xia, Adv. Energy Mater. 11 (2021) 2003599.
    [23]
    S. J. Yoo, B. Evanko, X. Wang, M. Romelczyk, A. Taylor, X. Ji, S. W. Boettcher, G. D. Stucky, J. Am. Chem. Soc. 139 (2017) 9985-9993.
    [24]
    B. Evanko, S. J. Yoo, S.-E. Chun, X. Wang, X. Ji, S. W. Boettcher, G. D. Stucky, J. Am. Chem. Soc. 138 (2016) 9373-9376.
    [25]
    C. DeBruler, B. Hu, J. Moss, X. Liu, J. Luo, Y. Sun, T. L. Liu, Chem 3 (2017) 961-978.
    [26]
    H. Luo, G. Wang, J. Lu, L. Zhuang, L. Xiao, ACS Appl. Mater. Interfaces 11 (2019) 41215-41221.
    [27]
    C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lu, C.-J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Nature 569 (2019) 245-250.
    [28]
    M. K. Rabchinskii, S. A. Ryzhkov, D. A. Kirilenko, N. V. Ulin, M. V. Baidakova, V. V. Shnitov, S. I. Pavlov, R. G. Chumakov, D. Y. Stolyarova, N. A. Besedina, Sci. Rep. 10 (2020) 1-12.
    [29]
    O. Jankovsky, P. Simek, K. Klimova, D. Sedmidubsky, S. Matejkova, M. Pumera, Z. Sofer, Nanoscale 6 (2014) 6065-6074.
    [30]
    J. K. Tang, S. B. Yu, C. Z. Liu, H. Wang, D. W. Zhang, Z. T. Li, Asian J. Org. Chem. 8 (2019) 1912-1918.
    [31]
    W. Kautek, A. Conradi, C. Fabjan, G. Bauer, Electrochim. Acta 47 (2001) 815-823.
    [32]
    C. Wang, S. Zhao, X. Song, N. Wang, H. Peng, J. Su, S. Yang, S. Zeng, X. Xu, J. Yang, Adv. Energy Mater. 2022, DOI: 10.1002/aenm.202200157.
    [33]
    G. Liang, Y. Wang, Z. Huang, F. Mo, X. Li, Q. Yang, D. Wang, H. Li, S. Chen, C. Zhi, Adv. Mater. 32 (2020) 1907802.
    [34]
    C. Han, H. Li, Y. Li, J. Zhu, C. Zhi, Nat. Commun. 12 (2021) 1-12.
    [35]
    J. Ge, L. Fan, A. Rao, J. Zhou,B. Lu, Nat. Sustain. 5 (2022) 225-234.
    [36]
    J. Li, Y. Hu, H. Xie, J. Peng, L. Fan, J. Zhou, B. Lu, Angew. Chem. 61 (2022) e202208291.
    [37]
    Y. Hu, L. Fan, A. Rao, W. Yu, C. Zhuoma, Y. Feng, Z. Qin, J. Zhou, B. Lu, Natl. Sci. Rev. 9 (2022) nwac134.
    [38]
    W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Adv. Energy Mater. 7 2017 1700983.
    [39]
    H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He, H. Zhou, Adv. Mater. 32 (2020) 2004240.
    [40]
    L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li, H. Huang, C. Zhi, Angew. Chem. Int. Ed. 133 (2021) 3835-3842.
    [41]
    J. H. Lee, Y. Byun, G. H. Jeong, C. Choi, J. Kwen, R. Kim, I. H. Kim, S. O. Kim, H. T. Kim, Adv. Mater. 31 (2019) 1904524.
    [42]
    H. Luo, G. Wang, J Lu, L. Zhuang, L. Xiao, ACS Appl. Mater. Interfaces, 2019, 11, 41215-41211.
    [43]
    F. Yu, L. Pang, X. Wang, E. R. Waclawik, F. Wang, K. Ostrikov, H. Wang, Energy Stor. Mater. 19 (2019) 56-61.
    [44]
    S. Sathyamoorthi, M. Kanagaraj, M. Kathiresan, V. Suryanarayanan, D. Velayutham, J. Mater. Chem. A 4 (2016) 4562-4569.
    [45]
    J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Nat. Commun. 9 (2018) 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return