Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Jixue Shen, Bao Zhang, Changwang Hao, Xiao Li, Zhiming Xiao, Xinyou He, Xing Ou. Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes. Green Energy&Environment, 2024, 9(6): 1045-1057. doi: 10.1016/j.gee.2022.11.006
Citation: Jixue Shen, Bao Zhang, Changwang Hao, Xiao Li, Zhiming Xiao, Xinyou He, Xing Ou. Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes. Green Energy&Environment, 2024, 9(6): 1045-1057. doi: 10.1016/j.gee.2022.11.006

Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes

doi: 10.1016/j.gee.2022.11.006
  • Benefited from its high process feasibility and controllable costs, binary-metal layered structured LiNi0.8Mn0.2O2 (NM) can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles (EVs) sales, which is considered as the most promising next-generation cathode material for lithium-ion batteries (LIBs). However, the lack of deep understanding on the failure mechanism of NM has seriously hindered its application, especially under the harsh condition of high-voltage without sacrifices of reversible capacity. Herein, single-crystal LiNi0.8Mn0.2O2 is selected and compared with traditional LiNi0.8Co0.1Mn0.1O2 (NCM), mainly focusing on the failure mechanism of Co-free cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic. Specifically, the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition, which exacerbates the distortion of the lattice, mechanical strain changes and exhibits poor electrochemical performance, especially under the high cutoff voltage. Furthermore, the reaction kinetic of NM is impaired due to the absence of Co element, especially at the single-crystal architecture. Whereas, the negative influence of Li/Ni antisite defect is controllable at low current densities, owing to the attenuated polarization. Notably, Co-free NM can exhibit better safety performance than that of NCM cathode. These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials, providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.

     

  • loading
  • [1]
    N. Muralidharan, E.C. Self, M. Dixit, Z. Du, R. Essehli, R. Amin, J. Nanda, I. Belharouak, Adv. Energy Mater 12 (2022) 2103050.
    [2]
    J. Langdon, A. Manthiram, Energy Storage Mater. 37 (2021) 143-160.
    [3]
    H. Li, A. Liu, N. Zhang, Y. Wang, S. Yin, H. Wu, J.R. Dahn, Chem. Mater. 31 (2019) 7574-7583.
    [4]
    X. Wang, X. Ruan, C.F. Du, H. Yu, Chem. Rec. 22 (2022) 202200119.
    [5]
    A. Zeng, W. Chen, K.D. Rasmussen, X. Zhu, M. Lundhaug, D.B. Muller, J. Tan, J.K. Keiding, L. Liu, T. Dai, A. Wang, G. Liu, Nat. Commun. 13 (2022) 1341.
    [6]
    R. Wang, L. Wang, Y. Fan, W. Yang, C. Zhan, G. Liu, J. Ind. and Eng. Chem. 110 (2022) 120-130.
    [7]
    E. Rossen, C.D.W. Jones, J.R. Dahn, Solid State Ionics 57 (1992) 311–318.
    [8]
    Y. Makimura, T. Ohzuku, J. Power Sources 119-121 (2003) 156-160.
    [9]
    K. Sakamoto, H. Konishi, N. Sonoyama, A. Yamada, K. Tamura, J.i. Mizuki, R. Kanno, J. Power Sources 174 (2007) 678-682.
    [10]
    P. Periasamy, N. Kalaiselvi, J. Power Sources 159 (2006) 1360-1364.
    [11]
    Y.K. Sun, D.J. Lee, Y.J. Lee, Z. Chen, S.T. Myung, ACS Appl. Mater. Interfaces 5 (2013) 11434-11440.
    [12]
    Z. Li, C. Luo, C. Wang, G. Jiang, J. Chen, S. Zhong, Q. Zhang, D. Li, J. Solid State Electrochem. 22 (2018) 2811-2820.
    [13]
    D.-j. Kim, H.S. Ko, J.-w. Lee, Solid State Ionics 278 (2015) 239-244.
    [14]
    W. Yao, H. Zhang, S. Zhong, X. Rao, M. Zeng, Y. Fu, J. Inorg. Mater. 36 (2021) 718-729.
    [15]
    L. Zhang, L. Xiao, J. Zheng, H. Wang, H. Chen, Y. Zhu, J. Electrochem. Soc. 168 (2021) 110528.
    [16]
    X. Wang, B. Zhang, Z. Xiao, L. Ming, M. Li, L. Cheng, X. Ou, Chin. Chem. Lett. (2022). DOI: 10.1016/j.cclet.2022.107772.
    [17]
    G.-T. Park, B. Namkoong, S.-B. Kim, J. Liu, C.S. Yoon, Y.-K. Sun, Nat. Energy 7 (2022) 946-954.
    [18]
    T. Liu, L. Yu, J. Liu, J. Lu, X. Bi, A. Dai, M. Li, M. Li, Z. Hu, L. Ma, D. Luo, J. Zheng, T. Wu, Y. Ren, J. Wen, F. Pan, K. Amine, Nat. Energy 6 (2021) 277-286.
    [19]
    H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J.R. Dahn, J. Electrochem. Soc. 166 (2019) A429-A439.
    [20]
    N. Zhang, N. Zaker, H. Li, A. Liu, J. Inglis, L. Jing, J. Li, Y. Li, G.A. Botton, J.R. Dahn, Chem. Mater. 31 (2019) 10150-10160.
    [21]
    Y. Liu, H. Wu, K. Li, H. Li, D. Ouyang, P.P. Arab, N. Phattharasupakun, D. Rathore, M. Johnson, Y. Wang, S. Yin, J.R. Dahn, J. Electrochem. Soc. 167 (2020) 120533.
    [22]
    Y. Liu, D. Ouyang, D. Rathore, H. Wu, K. Li, Y. Wang, J. Sha, S. Yin, J.R. Dahn, J. Electrochem. Soc. 168 (2021) 090555.
    [23]
    Y. Liu, H. Wu, Y. Wang, K. Li, S. Yin, J.R. Dahn, J. Electrochem. Soc. 167 (2021) 160556.
    [24]
    D. Rathore, M. Garayt, Y. Liu, C. Geng, M. Johnson, J.R. Dahn, C. Yang, ACS Energy Lett. 7 (2022) 2189-2195.
    [25]
    S. Lee, A. Manthiram, ACS Energy Lett. 7 (2022) 3058-3063.
    [26]
    Y.Q. Sun, W. Fu, Y.X. Hu, J. Vaughan, LZ. Wang. Tungsten 3 (2021) 245-259.
    [27]
    H.-H. Ryu, H.H. Sun, S.-T. Myung, C.S. Yoon, Y.-K. Sun, Energy Environ. Sci. 14 (2021) 844-852.
    [28]
    W. Li, S. Lee, A. Manthiram, Adv. Mater. 32 (2020) 2002718.
    [29]
    S. Lee, W. Li, A. Dolocan, H. Celio, H. Park, J.H. Warner, A. Manthiram, Adv. Energy Mater. 11 (2021) 2100858.
    [30]
    R. Brow, A. Donakowski, A. Mesnier, D.J. Pereira, K.X. Steirer, S. Santhanagopalan, A. Manthiram, ACS Appl. Energy Mater. 5 (2022) 6996-7005.
    [31]
    M. Yi, W. Li, A. Manthiram, Chem. Mater. 34 (2022) 629-642.
    [32]
    A. Aishova, G.T. Park, C.S. Yoon, Y.K. Sun, Adv. Energy Mater. 10 (2019) 1903179.
    [33]
    H.-H. Ryu, G.-C. Kang, R. Ismoyojati, G.-T. Park, F. Maglia, Y.-K. Sun, Mater. Today 56 (2022) 8-15.
    [34]
    C.-H. Jo, N. Voronina, S.-T. Myung, Energy Storage Mater. 51 (2022) 568-587.
    [35]
    L. Ni, S. Zhang, A. Di, W. Deng, G. Zou, H. Hou, X. Ji, Adv. Energy Mater. 12 (2022) 2201510.
    [36]
    P. Dai, X. Kong, H. Yang, J. Li, J. Zeng, J. Zhao, ACS Sustainable Chem. Eng. 10 (2022) 4381-4390.
    [37]
    L. Ni, R. Guo, S. Fang, J. Chen, J. Gao, Y. Mei, S. Zhang, W. Deng, G. Zou, H. Hou, X. Ji, eScience 2 (2022) 116-124.
    [38]
    Y. Sun, Z. Liu, X. Chen, X. Yang, F. Xiang, W. Lu, Electrochim. Acta 376 (2021) 138038.
    [39]
    W. Deng, X. Wang, Green Energy Environ. 7 (2022) 1129-1131.
    [40]
    H. Wang, F. Zhang, J. Xia, F. Lu, B. Zhou, D. Yi, X. Wang, Green Energy Environ. 7 (2022) 734-741.
    [41]
    S. Lee, H. Kim, J.-H. Lee, B.-K. Kim, H. Shin, J. Kim, S. Park, Nano Energy 79 (2021) 105480.
    [42]
    L. Wang, J. Qin, Z. Bai, H. Qian, Y. Cao, H.M.K. Sari, Y. Xi, H. Shan, S. Wang, J. Zuo, X. Pu, W. Li, J. Wang, X. Li, Small Structure 3 (2022) 2100233.
    [43]
    Z. Feng, S. Zhang, R. Rajagopalan, X. Huang, Y. Ren, D. Sun, H. Wang, Y. Tang, ACS Appl. Mater. Interfaces 13 (2021) 43039-43050.
    [44]
    H.-x. Wei, L.-b. Tang, Y.-d. Huang, Z.-y. Wang, Y.-h. Luo, Z.-j. He, C. Yan, J. Mao, K.-h. Dai, J.-c. Zheng, Mater. Today 51 (2021) 365-392.
    [45]
    B. Wang, F.-l. Zhang, X.-a. Zhou, P. Wang, J. Wang, H. Ding, H. Dong, W.-b. Liang, N.-s. Zhang, S.-y. Li, J. Mater. Chem. A 9 (2021) 13540-13551.
    [46]
    Z. Fu, J. Hu, W. Hu, S. Yang, Y. Luo, Appl. Surf. Sci. 441 (2018) 1048-1056.
    [47]
    S. Li, Z. Liu, L. Yang, X. Shen, Q. Liu, Z. Hu, Q. Kong, J. Ma, J. Li, H.-J. Lin, C.-T. Chen, X. Wang, R. Yu, Z. Wang, L. Chen, Nano Energy 98 (2022) 107335.
    [48]
    B. Zhu, L. Fan, N. Mushtaq, R. Raza, M. Sajid, Y. Wu, W. Lin, J.-S. Kim, P.D. Lund, S. Yun, Electrochem. Energy Rev. 4 (2021) 757-792.
    [49]
    X. Ou, T. Liu, W. Zhong, X. Fan, X. Guo, X. Huang, L. Cao, J. Hu, B. Zhang, Y.S. Chu, G. Hu, Z. Lin, M. Dahbi, J. Alami, K. Amine, C. Yang, J. Lu, Nat. Commun. 13 (2022) 2319.
    [50]
    G. Li, M. Kou, J. Tu, Y. Luo, M. Wang, S. Jiao, Chem. Eng. J. 421 (2021) 127792.
    [51]
    C.-a. Lin, R.N. Nasara, S.-k. Lin, ACS Sustainable Chem. Eng. 9 (2021) 11342-11350.
    [52]
    C. Liang, L. Jiang, Z. Wei, W. Zhang, Q. Wang, J. Sun, J. Energy Chem. 65 (2022) 424-432.
    [53]
    S. Zhao, B. Wang, Z. Zhang, X. Zhang, S. He, H. Yu, Electrochem. Energy Rev. 5 (2021) 1-31.
    [54]
    X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang, J. Zhang, L. Zou, L. Seidl, Y. Li, G. Hu, C. Battaglia, Y. Yang, Nat. Commun. 12 (2021) 5320.
    [55]
    Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Electrochem. Energy Rev. 2 (2019) 1-28.
    [56]
    M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu, X. Yang, X.-L. Wu, Green Energy Environ 7 (2022) 763-771.
    [57]
    Z. Shen, L. Cao, C.D. Rahn, C.-Y. Wang, J. Electrochem. Soc. 160 (2013) A1842-A1846.
    [58]
    Z. Li, H. Li, S. Cao, W. Guo, J. Liu, J. Chen, C. Guo, G. Chen, B. Chang, Y. Bai, X. Wang, Chem. Eng. J. 452 (2023) 139041.
    [59]
    B. Zhang, J. Shen, Q. Wang, C. Hu, B. Luo, Y. Liu, Z. Xiao, X. Ou, Energy Environ. Mater. (2022) DOI: 10.1002/eem2.12270.
    [60]
    J. Shen, D. Deng, X. Li, B. Zhang, Z. Xiao, C. Hu, X. Yan, X. Ou, J. Alloys Compd. 903 (2022) 163999.
    [61]
    C. Wang, R. Zhang, K. Kisslinger, H.L. Xin, Nano Lett. 21 (2021) 3657-3663.
    [62]
    Z. Feng, R. Rajagopalan, D. Sun, Y. Tang, H. Wang, Chem. Eng. J. 382 (2020) 122959.
    [63]
    J. Yang, Y. Xia, ACS Appl. Mater. Interfaces 8 (2016) 1297-1308.
    [64]
    J. Kang, S. Takai, T. Yabutsuka, T. Yao, J. Electrochem. Soc. 168 (2021) 010518.
    [65]
    W. Zhao, L. Zou, L. Zhang, X. Fan, H. Zhang, F. Pagani, E. Brack, L. Seidl, X. Ou, K. Egorov, X. Guo, G. Hu, S. Trabesinger, C. Wang, C. Battaglia, Small 18 (2022) 2107357.
    [66]
    Y. Guo, X. Li, H. Guo, Q. Qin, Z. Wang, J. Wang, G. Yan, Energy Storage Mater. 51 (2022) 476-485.
    [67]
    S. Liu, L. Xiong, C. He, J. Power Sources 261 (2014) 285-291.
    [68]
    W. Li, I. Demir, D. Cao, D. Jost, F. Ringbeck, M. Junker, D.U. Sauer, Energy Storage Mater. 44 (2022) 557-570.
    [69]
    H. Zhang, H. Liu, L.F.J. Piper, M.S. Whittingham, G. Zhou, Chem. Rev. 122 (2022) 5641-5681.
    [70]
    G. Qian, J. Wang, H. Li, Z.F. Ma, P. Pianetta, L. Li, X. Yu, Y. Liu, Natl. Sci. Rev. 9 (2022) nwab146.
    [71]
    X. Feng, M. Fang, X. He, M. Ouyang, L. Lu, H. Wang, M. Zhang, J. Power Sources 255 (2014) 294-301.
    [72]
    T. Wu, H. Chen, Q. Wang, J. Sun, J. Hazard. Mater. 344 (2018) 733-741.
    [73]
    R. Chen, A.M. Nolan, J. Lu, J. Wang, X. Yu, Y. Mo, L. Chen, X. Huang, H. Li, Joule 4 (2020) 812-821.
    [74]
    W. Yang, Nat. Energy 3 (2018) 619-620.
    [75]
    C. Liang, W. Zhang, Z. Wei, Z. Wang, Q. Wang, J. Sun, J. Energy Chem. 59 (2021) 446-454.
    [76]
    E. Lee, S. Muhammad, T. Kim, H. Kim, W. Lee, W.S. Yoon, Adv. Sci. 7 (2020) 1902413.
    [77]
    F. Liu, Z. Zhang, Z. Yu, X. Fan, M. Yi, M. Bai, Y. Song, Q. Mao, B. Hong, Z. Zhang, Y. Lai, Chem. Eng. J. 434 (2022) 134745.
    [78]
    F. Wu, S. Fang, M. Kuenzel, A. Mullaliu, J.-K. Kim, X. Gao, T. Diemant, G.-T. Kim, S. Passerini, Joule 5 (2021) 2177-2194.
    [79]
    H. Yu, S. Wang, Y. Hu, G. He, L.Q. Bao, I.P. Parkin, H. Jiang, Green Energy Environ. 7 (2022) 266-274.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return