Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Kaihang Zhang, Yuanzheng Zhang, Su Liu, Xin Tong, Junfeng Niu, Dong Wang, Junchen Yan, Zhaoyang Xiong, John Crittenden. Influence of MnOx deposition on TiO2 nanotube arrays for electrooxidation. Green Energy&Environment, 2023, 8(2): 612-618. doi: 10.1016/j.gee.2022.11.005
Citation: Kaihang Zhang, Yuanzheng Zhang, Su Liu, Xin Tong, Junfeng Niu, Dong Wang, Junchen Yan, Zhaoyang Xiong, John Crittenden. Influence of MnOx deposition on TiO2 nanotube arrays for electrooxidation. Green Energy&Environment, 2023, 8(2): 612-618. doi: 10.1016/j.gee.2022.11.005

Influence of MnOx deposition on TiO2 nanotube arrays for electrooxidation

doi: 10.1016/j.gee.2022.11.005
  • TiO2 has demonstrated outstanding performance in electrochemical advanced oxidation processes (EAOPs) due to its structural stability and high oxygen overpotential. However, there is still much room for improving its electrochemical activity. Herein, narrow bandgap manganese oxide (MnOx) was composited with TiO2 nanotube arrays (TiO2 NTAs) that in-situ oxidized on porous Ti sponge, forming the MnOx-TiO2 NTAs anode. XANES and XPS analysis further proved that the composition of MnOx is Mn2O3. Electrochemical characterizations revealed that increasing the composited concentration of MnOx can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnOx-TiO2 NTAs anode. Meanwhile, the optimal degradation rate of benzoic acid (BA) was achieved using MnOx-TiO2 NTAs with a MnOx concentration of 0.1 mmol L-1, and the role of MnOx was proposed based on DFT calculation. Additionally, the required electrical energy (EE/O) to destroy BA was optimized by varying the composited concentration of MnOx and the degradation voltage. These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.

     

  • loading
  • [1]
    X. Meng, Z. Chen, C. Wang, W. Zhang, K. Zhang, S. Zhou, J. Luo, N. Liu, D. Zhou, D. Li, J. Crittenden, Environ. Sci. Technol. 53 (2019) 13784-13793.
    [2]
    G. Liu, Q. Wang, D. Yan, Y. Zhang, C. Wang, S. Liang, L. Jiang, H. He, Green Chem. 23 (2021) 1665-1677.
    [3]
    B.P. Chaplin, Environ. Sci. Process. Impacts 16 (2014) 1182-1203.
    [4]
    Z. Gu, L.D. Plant, X.-Y. Meng, J.M. Perez-Aguilar, Z. Wang, M. Dong, D.E. Logothetis, R. Zhou, ACS Nano 12 (2018) 705-717.
    [5]
    I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Environ. Sci. Pollut. Res. 21 (2014) 8336-8367.
    [6]
    R.Z. Xie, X.Y. Meng, P.Z. Sun, J.F. Niu, W.J. Jiang, L. Bottomley, D.O. Li, Y.S. Chen, J. Crittenden, Appl. Catal. B: Environ. 203 (2017) 515-525.
    [7]
    Y.P. He, H.B. Lin, Z.C. Guo, W.L. Zhang, H.D. Li, W.M. Huang, Sep. Purif. Technol. 212 (2019) 802-821.
    [8]
    F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, Appl. Catal. B: Environ. 201 (2017) 77-83.
    [9]
    U. Ghosh, A. Pal, J. Ind. Eng. Chem. 79 (2019) 383-408.
    [10]
    A.M. Zaky, B.P. Chaplin, Environ. Sci. Technol. 47 (2013) 6554-6563.
    [11]
    X. Wu, S. Cui, M. Fei, S. Liu, X. Gao, G. Li, Green Energy Environ (2022) https://doi.org/10.1016/j.gee.2022.03.010.
    [12]
    S. Zhou, J. Lai, X. Liu, G. Huang, G. You, Q. Xu, D. Yin, Green Energy Environ 7 (2022) 257-265.
    [13]
    Y. Yang, M.R. Hoffmann, Environ. Sci. Technol. 50 (2016) 11888-11894.
    [14]
    Y. Yang, L.C. Kao, Y. Liu, K. Sun, H. Yu, J. Guo, S.Y.H. Liou, M.R. Hoffmann, ACS Catal. 8 (2018) 4278-4287.
    [15]
    J.S. Ko, N.Q. Le, D.R. Schlesinger, D. Zhang, J.K. Johnson, Z. Xia, Sci. Rep. 11 (2021) 18020.
    [16]
    J.M. Kesselman, O. Weres, N.S. Lewis, M.R. Hoffmann, J. Phys. Chem. B 101 (1997) 2637-2643.
    [17]
    H. Lin, R. Xiao, R. Xie, L. Yang, C. Tang, R. Wang, J. Chen, S. Lv, Q. Huang, Environ. Sci. Technol. 55 (2021) 2597-2607.
    [18]
    C. Zhang, W. Chen, D. Hu, H. Xie, Y. Song, B. Luo, Y. Fang, W. Gao, Z. Zhong, Green Energy Environ 7 (2022) 680-690.
    [19]
    M.C. Nevarez-Martinez, M.P. Kobylanski, P. Mazierski, J. Wolkiewicz, G. Trykowski, A. Malankowska, M. Kozak, P.J. Espinoza-Montero, A. Zaleska-Medynska, Molecules 22 (2017) 564.
    [20]
    Q. Ma, H. Wang, H. Zhang, X. Cheng, M. Xie, Q. Cheng, Sep. Purif. Technol. 189 (2017) 193-203.
    [21]
    G. Wang, T. Chen, S. Liu, F. Wang, M. Li, M. Xie, J. Wang, Y. Xiang, W. Han, Dalton Trans. 50 (2021) 8711-8717.
    [22]
    S. Li, Z. Ma, L. Wang, J. Liu, Sci. China, Ser. B: Chem. 51 (2008) 179-185.
    [23]
    S.-L. Chiam, S.-Y. Pung, F.-Y. Yeoh, Environ. Sci. Pollut. Res. 27 (2020) 5759-5778.
    [24]
    E. Park, H. Le, S. Chin, J. Kim, G.-N. Bae, J. Jurng, J. Porous Mater. 19 (2012) 877-881.
    [25]
    X. Xu, J. Zhao, Z. Zhou, Q. Jin, R. Mo, W. Liu, Y. Yang, Y. Zhu, J. Mater. Sci. 54 (2019) 12509-12521.
    [26]
    A. Massa, S. Hernandez, A. Lamberti, C. Galletti, N. Russo, D. Fino, Appl. Catal. B: Environ. 203 (2017) 270-281.
    [27]
    M. Chen, C. Wang, X. Zhao, Y. Wang, W. Zhang, Z. Chen, X. Meng, J. Luo, J. Crittenden, Environ. Int. 140 (2020) 105813.
    [28]
    G.W. Klein, K. Bhatia, V. Madhavan, R.H. Schuler, J. Phys. Chem. 79 (1975) 1767-1774.
    [29]
    J.M. Cerrato, W.R. Knocke, M.F. Hochella, A.M. Dietrich, A. Jones, T.F. Cromer, Environ. Sci. Technol. 45 (2011) 10068-10074.
    [30]
    M.A. Stranick, Surf. Sci. Spectra 6 (1999) 39-46.
    [31]
    H. Nesbitt, D. Banerjee, Am. Mineral. 83 (1998) 305-315.
    [32]
    Z.B. Jildeh, J. Oberlander, P. Kirchner, P.H. Wagner, M.J. Schoning, Nanomaterials (Basel) 8 (2018).
    [33]
    L.R.F. Allen J. Bard, Russ. J. Electrochem. 38 (2002) 1364-1365.
    [34]
    Y. Wang, C. Jiang, Q. Chen, Q. Zhou, H. Wang, J. Wan, L. Ma, J. Wang, J. Phys. Chem. Lett. 9 (2018) 6847-6852.
    [35]
    B. Sun, T. Shi, Z. Peng, W. Sheng, T. Jiang, G. Liao, Nanoscale Res. Lett. 8 (2013) 462.
    [36]
    S.K. Jana, B. Saha, B. Satpati, S. Banerjee, Dalton Trans. 44 (2015) 9158-9169.
    [37]
    J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH's water treatment: principles and design, John Wiley & Sons, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return