Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Ruijia Hu, Ming Li, Tao Shen, Xin Wang, Zhuohua Sun, Xinning Bao, Kequan Chen, Kai Guo, Lei Ji, Hanjie Ying, Pingkai Ouyang, Chenjie Zhu. A sustainable process to 100% bio-based nylons integrated chemical and biological conversion of lignocellulose. Green Energy&Environment, 2024, 9(2): 390-402. doi: 10.1016/j.gee.2022.11.004
Citation: Ruijia Hu, Ming Li, Tao Shen, Xin Wang, Zhuohua Sun, Xinning Bao, Kequan Chen, Kai Guo, Lei Ji, Hanjie Ying, Pingkai Ouyang, Chenjie Zhu. A sustainable process to 100% bio-based nylons integrated chemical and biological conversion of lignocellulose. Green Energy&Environment, 2024, 9(2): 390-402. doi: 10.1016/j.gee.2022.11.004

A sustainable process to 100% bio-based nylons integrated chemical and biological conversion of lignocellulose

doi: 10.1016/j.gee.2022.11.004
  • Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks. In this study, 100% bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose. These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar. Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence (Raney Ni mediated reductive catalytic fractionation - reductive funnelling - oxidative funnelling), which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency. The structural and thermodynamic properties of the obtained nylons have been systematically investigated, and thus obtained transparent bio-based nylons exhibited higher Mw (>32,000) and excellent thermal stability (Td5% > 265 ℃). Considering their moderate Tg and good melt strength, these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.

     

  • loading
  • [1]
    Y. Zhu, C. Romain, C.K. Williams, Nature 540 (2016) 354-362.
    [2]
    D. Esposito, M. Antonietti, Chem. Soc. Rev. 44 (2015) 5821-5835.
    [3]
    R.M. O'Dea, J.A. Willie, T.H. Epps, ACS Macro Lett. 9 (2020) 476-493.
    [4]
    J. Wang, D. Zhang, F. Chu, Adv. Mater. 33 (2021) 2001135.
    [5]
    M. Brodin, M. Vallejos, M.T. Opedal, M.C. Area, G. Chinga-Carrasco, J. Cleaner Prod. 162 (2017) 646-664.
    [6]
    S. Wong, R. Shu, J. Zhang, H. Liu, N. Yan, Chem. Soc. Rev. 49 (2020) 5510-5560.
    [7]
    W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chem. Soc. Rev. 47 (2018) 852-908.
    [8]
    Z. Sun, B. Fridrich, A.D. Santi, S. Elangovan, K. Barta, Chem. Rev. 118 (2018) 614-678.
    [9]
    R. Rinaldi, R. Jastrzebski, M.T. Clough, J. Ralph, M. Kennema, P.C.A. Bruijnincx, B.M. Weckhuysen, Angew. Chem. Int. Ed. 55 (2016) 8164-8215.
    [10]
    S. Bertella, J.S. Luterbacher, Trends in Chem. 2 (2020) 440-453.
    [11]
    G. Liu, Q. Wang, D. Yan, Y. Zhang, C. Wang, S. Liang, L. Jiang, H. He, Green Chem. 23 (2021) 1665-1677.
    [12]
    Z. Li, Z. Cai, Q. Zeng, T. Zhang, L.J. France, C. Song, Y. Zhang, H. He, L. Jiang, J. Long, X. Li, Green Chem. 20 (2018) 3743-3752.
    [13]
    Y. Liao, S.F. Koelewijn, G. Van den Bossche, J.V. Aelst, S. Van den Bosch, T. Renders, K. Navare, T. Nicolai, K.V. Aelst, M. Maesen, H. Matsushima, J.M. Thevelein, K.V. Acker, B. Lagrain, D. Verboekend and B.F. Sels, Science 367 (2020) 1385-1390.
    [14]
    X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen, Y. Wang, Nat. Catal. 1 (2018) 772-780.
    [15]
    T. Parsell, S. Yohe, J. Degenstein, T. Jarrell, I. Klein, E. Gencer, B. Hewetson, M. Hurt, J.I. Kim, H. Choudhar, B. Saha, R. Meilan, N. Mosier, F. Ribeiro, W.N. Delgass, C. Chapple, H.I. Kenttamaa, R. Agrawal, M.M. Abu-Omar, Green Chem. 17 (2015) 1492-1499.
    [16]
    S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S.F. Koelewijn, T. Renders, B.D. Meester, W.J.J. Huijgen, W. Dehaen, C.M. Courtin, B. Lagrain, W. Boerjan, B.F. Sels, Energy Environ. Sci. 8 (2015) 1748-1763.
    [17]
    S. Van den Bosch, T. Renders, S. Kennis, S.F. Koelewijn, G. Van den Bossche, T. Vangeel, A. Deneyer, D. Depuydt, C.M. Courtin, J.M. Thevelein, W. Schutyser, B.F. Sels, Green Chem. 19 (2017) 3313-3326.
    [18]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. https://doi.org/10.1016/j.gee.2022.07.003.
    [19]
    Y. Li, H. Guo, C. Deng, J. Deng, Green Energy Environ. https://doi.org/10.1016/j.gee.2020.11.001.
    [20]
    Y. Zhang, H. He, Y. Liu, Y. Wang, F. Huo, M. Fan, H. Adidharma, X. Li, S. Zhang, Green Chem. 21(1) 2019 9-201935.
    [21]
    Z. Li, Y. Huang, X. Chi, D. Li, L. Zhong, X. Li, C. Liu, X. Peng, Green Energy Environ. 7 (2022) 1310-1317.
    [22]
    T. Renders, S. Van den Bosch, S.F. Koelewijn, W. Schutyser, B.F. Sels, Energy Environ. Sci. 10 (2017) 1551-1557.
    [23]
    M.M. Abu-Omar, K. Barta, G.T. Beckham, J.S. Luterbacher, J. Ralph, R. Rinaldi, Y. Roman-Leshkov, J.S.M. Samec, B.F. Sels, F. Wang, Energy Environ. Sci. 14 (2021) 262-292.
    [24]
    S. Song, J. Zhang, G. Gozaydin, N. Yan, Angew. Chem. Int. Ed. 58 (2019) 4934-4937.
    [25]
    J.G. Linger, D.R. Vardon, M.T. Guarnieri, E.M. Karp, G.B. Hunsinger, M.A. Franden, C.W. Johnson, G. Chupka, T.J. Strathmann, P.T. Pienkos, G.T. Beckham, Proc. Natl. Acad. Sci. 111 (2014) 12013-12018.
    [26]
    P. Ferrini, R. Rinaldi, Angew. Chem. Int. Ed. 53 (2014) 8634-8639.
    [27]
    Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu, J. Xu, Energy Environ. Sci. 6 (2013) 994-1007.
    [28]
    K. Marchildon, Macromol. React. Eng. 5 (2011) 22-54.
    [29]
    M. Winnacker, B. Rieger, Macromol. Rapid Commun. 37 (2016) 1391-1413.
    [30]
    P. Radzik, A. Leszczynska, K. Pielichowski, Polym. Bull. 77 (2020) 501-528.
    [31]
    Z. Wang, M. Ganewatta, C. Tang, Prog. Polym. Sci. 101 (2020) 101197.
    [32]
    D.R. Vardon, M.A. Franden, C.W. Johnson, E.M. Karp, M.T. Guarnieri, J.G. Linger, M.J. Salm, T.J. Strathmann, G.T. Beckham, Energy Environ. Sci. 8 (2015) 617-628.
    [33]
    C.M. Rohles, L. Glaser, M. Kohlstedt, G. Giesselmann, S. Pearson, A.D. Campo, J. Becker, C. Wittmann, Green Chem. 20 (2018) 4662-4674.
    [34]
    M.O. Lee, J.H. Kim, J.Y. Park, S.Y. Kim, Green Chem. 23 (2021) 6469-6476.
    [35]
    Y. Jiang, D. Maniar, A.J.J. Woortman, K. Loos, Biomacromolecules 16 (2015) 3674-3685.
    [36]
    J.A. Lee, J.H. Ahn, I. Kim, S. Li, S.Y. Lee, ACS Sustainable Chem. Eng. 8 (2020) 5604-5614.
    [37]
    H.T. Kim, K.A. Baritugo, Y.H. Oh, S.M. Hyun, T.U. Khang, K.H. Kang, S.H. Jung, B.K. Song, K. Park, M.O. Lee, Y. Kam, Y.T. Hwang, S.J. Park, J.C. Joo, ACS Sustainable Chem. Eng. 6 (2018) 5296-5305.
    [38]
    H. Nakajima, P. Dijkstra, K. Loos, Polym. 9 (2017) 523.
    [39]
    X. Wang, S. Gao, J. Wang, S. Xu, H. Li, K. Chen, P. Ouyang, Chin. J. Chem. Eng. 30 (2021) 4-13.
    [40]
    W. Huang, X. Hu, J. Zhai, N. Zhu, K. Guo, Mater. Today Sustain. 10 (2020) 100049.
    [41]
    T. Shen, B. Zhang, Y. Wang, P. Yang, M. Li, R. Hu, K. Guo, K. Chen, N. Zhu, L. Wang, C. Zhu, H. Ying, Chem. Eng. J. 437 (2022) 135361.
    [42]
    W. Huang, J. Zhai, C. Zhang, X. Hu, N. Zhu, K. Chen, K. Guo, Ind. Eng. Chem. Res. 59 (2020) 13588-13594.
    [43]
    Z. Sun, Z. Zhang, T. Yuan, X. Ren, Z. Rong, ACS Catal. 11 (2021) 10508-10536.
    [44]
    X. Wang, R. Rinaldi, Energy Environ. Sci. 5 (2012) 8244-8260.
    [45]
    Z. Zhang, M.D. Harrison, D.W. Rackemann, W.O.S. Doherty, I.M. O’Hara, Green Chem. 18 (2016) 360-381.
    [46]
    W. Schutyser, S. Van den Bosch, J. Dijkmans, S. Turner, M. Meledina, G.V. Tendeloo, D.P. Debecker, B.F. Sels, ChemSusChem 8 (2015) 1805-1818.
    [47]
    X. Ouyang, X. Huang, M.D. Boot, E.J.M. Hensen, ChemSusChem 13 (2020) 1705-1709.
    [48]
    W. Schutyser, G. Van den Bossche, A. Raaffels, S. Van den Bosch, S.F. Koelewijn, T. Renders, B F. Sels, ACS Sustainable Chem. Eng. 4 (2016) 5336-5346.
    [49]
    G. Calvaruso, J.A. Burak, M.T. Clough, M. Kennema, F. Meemken, R. Rinaldi, ChemCatChem 9 (2017) 2627-2632.
    [50]
    S.V.D. Vyver, Y. Roman-Leshkov, Catal. Sci. Technol. 3 (2013) 1465-1479.
    [51]
    J. Rios, J. Lebeau, T. Yang, S. Li, M.D. Lynch, Green Chem. 23 (2021) 3172-3190.
    [52]
    D.R. Vardon, N.A. Rorrer, D. Salvachua, A.E. Settle, C.W. Johnson, M.J. Menart, N.S. Cleveland, P.N. Ciesielski, K.X. Steirer, J.R. Dorgan, G.T. Beckham, Green Chem. 18 (2016) 3397-3413.
    [53]
    L. Zhong, X. Zhang, C. Tang, Y. Chen, T. Shen, C. Zhu, H. Ying, Bioresour. Technol. 268 (2018) 677-683.
    [54]
    V. Froidevaux, C. Negrell, S. Caillol, J.P. Pascault, B. Boutevin, Chem. Rev. 116 (2016) 14181-14224.
    [55]
    T.U. Chae, J.H. Ahn, Y.S. Ko, J.W. Kim, J.A. Lee, E.H. Lee, S.Y. Lee, Metab. Eng. 58 (2020) 2-16.
    [56]
    J. Wang, X. Lu, H. Ying, W. Ma, S. Xu, X. Wang, K. Chen, P. Ouyang, Front. Microbiol. 9 (2018) 1312.
    [57]
    K. Chen, M. Li, X. Wang, J. Huang, P. Ouyang, Patent (2020) CN111118077A.
    [58]
    Z. Qian, X. Xia, S. Lee, Biotechnol. Bioeng. 104 (2010) 651-662.
    [59]
    T.M. Meiswinkel, V. Gopinath, S.N. Lindner, K.M. Nampoothiri, V.F. Wendisch, Microb. Biotechnol. 6 (2012) 131-140.
    [60]
    T. Yang, Y. Gao, X. Wang, B. Ma, Y. He, Polymer 237 (2021) 124356.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (159) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return