Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Huarong Fan, Yubing Si, Yiming Zhang, Fulong Zhu, Xin Wang, Yongzhu Fu. Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers. Green Energy&Environment, 2024, 9(3): 565-572. doi: 10.1016/j.gee.2022.11.001
Citation: Huarong Fan, Yubing Si, Yiming Zhang, Fulong Zhu, Xin Wang, Yongzhu Fu. Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers. Green Energy&Environment, 2024, 9(3): 565-572. doi: 10.1016/j.gee.2022.11.001

Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers

doi: 10.1016/j.gee.2022.11.001
  • Lithium-sulfur batteries (LSBs) with high energy densities have been demonstrated the potential for energy-intensive demand applications. However, their commercial applicability is hampered by hysteretic electrode reaction kinetics and the shuttle effect of lithium polysulfides (LiPSs). In this work, an interlayer consisting of high-entropy metal oxide (Cu0.7Fe0.6Mn0.4Ni0.6Sn0.5)O4 grown on carbon nanofibers (HEO/CNFs) is designed for LSBs. The CNFs with highly porous networks provide transport pathways for Li+ and e-, as well as a physical sieve effect to limit LiPSs crossover. In particular, the grapevine-like HEO nanoparticles generate metal-sulfur bonds with LiPSs, efficiently anchoring active materials. The unique structure and function of the interlayer enable the LSBs with superior electrochemical performance, i.e., the high specific capacity of 1381 mAh g-1 at 0.1 C and 561 mAh g-1 at 6 C. This work presents a facile strategy for exploiting high-performance LSBs.

     

  • loading
  • [1]
    Gao, X.-P.; Yang, H.-X., Energy Environ. Sci. 3 (2010) 174-189.
    [2]
    Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S., Chem. Rev. 114 (2014) 11751-11787.
    [3]
    Guo, W.; Fu, Y., Energy & Environ. Mater. 1 (2018) 20-27.
    [4]
    Tang, S.; Li, X.; Fan, Q.; Zhang, X.; Wang, D.-Y.; Guo, W.; Fu, Y., J. Electrochem. Soc. 169 (2022) 040525.
    [5]
    Manthiram, A.; Fu, Y.; Su, Y.-S., Acc. Chem. Res. 46 (2013) 1125-1134.
    [6]
    Manthiram, A.; Chung, S. H.; Zu, C., Adv. Mater. 27 (2015) 1980-2006.
    [7]
    Tang, H.; Yao, S.; Xue, S.; Liu, M.; Chen, L.; Jing, M.; Shen, X.; Li, T.; Xiao, K.; Qin, S., Electrochim. Acta 263 (2018) 158-167.
    [8]
    Zhao, M.; Li, X.-Y.; Chen, X.; Li, B.-Q.; Kaskel, S.; Zhang, Q.; Huang, J.-Q., eScience 1 (2021) 44-52.
    [9]
    Liu, J. D.; Zheng, X. S.; Shi, Z. F.; Zhang, S. Q., Ionics 20 (2013) 659-664.
    [10]
    Zhang, Y.; Si, Y.; Guo, W.; Li, X.; Tang, S.; Zhang, Z.; Wang, X.; Fu, Y., ACS Appl. Energy Mater. 4 (2021) 10104-10113.
    [11]
    Lian, J.; Guo, W.; Fu, Y., J. Am. Chem. Soc. 143 (2021) 11063-11071.
    [12]
    Guo, W.; Zhang, W.; Si, Y.; Wang, D.; Fu, Y.; Manthiram, A., Nat. Commun. 12 (2021) 3031.
    [13]
    Zhang, X.; Liu, X.; Zhang, W.; Song, Y., Green Energy Environ. (2022) 2468-0257.
    [14]
    Wu, K.; Hu, Y.; Shen, Z.; Chen, R.; He, X.; Cheng, Z.; Pan, P., J. Mater. Chem. A 6 (2018) 2693-2699.
    [15]
    Li, Q.; Liu, M.; Qin, X.; Wu, J.; Han, W.; Liang, G.; Zhou, D.; He, Y.-B.; Li, B.; Kang, F., J. Mater. Chem. A 4 (2016) 12973-12980.
    [16]
    Huang, J.-Q.; Chong, W. G.; Zheng, Q.; Xu, Z.-L.; Cui, J.; Yao, S.; Wang, C.; Kim, J.-K., Electrochim. Acta 268 (2018) 1-9.
    [17]
    Su, Y. S.; Manthiram, A., Chem. Commun. 48 (2012) 8817-8819.
    [18]
    Su, Y. S.; Manthiram, A., Nat. Commun. 3 (2012) 1166.
    [19]
    Huang, J.-Q.; Zhang, B.; Xu, Z.-L.; Abouali, S.; Akbari Garakani, M.; Huang, J.; Kim, J.-K., J. Power Sources 285 (2015) 43-50.
    [20]
    Wang, D.; Cao, Q.; Jing, B.; Wang, X.; Huang, T.; Zeng, P.; Jiang, S.; Zhang, Q.; Sun, J., Chem. Eng. J. 399 (2020) 125723.
    [21]
    Li, H.; Chen, Y.; Jin, Q.; Xiang, W.; Zhong, B.; Guo, X.; Wang, B., Green Energy Environ. 6 (2021) 506-516.
    [22]
    Yang, C.; Gong, N.; Chen, T.; Li, Y.; Peng, W.; Zhang, F.; Fan, X., Green Energy Environ. 7 (2022) 1340-1348.
    [23]
    Tao, Y.; Wei, Y.; Liu, Y.; Wang, J.; Qiao, W.; Ling, L.; Long, D., Energy Environ. Sci. 9 (2016) 3230-3239.
    [24]
    Sun, Q.; Xi, B.; Li, J.-Y.; Mao, H.; Ma, X.; Liang, J.; Feng, J.; Xiong, S., Adv. Energy Mater. 8 (2018) 1800595.
    [25]
    Hu, L.; Dai, C.; Liu, H.; Li, Y.; Shen, B.; Chen, Y.; Bao, S.-J.; Xu, M., Adv. Energy Mater. 8 (2018) 1800709.
    [26]
    Wu, F.; Pollard, T. P.; Zhao, E.; Xiao, Y.; Olguin, M.; Borodin, O.; Yushin, G., Energy Environ. Sci. 11 (2018) 807-817.
    [27]
    Mullens, C.; Pikulski, M.; Agachan, S.; Gorski, W., J. Am. Chem. Soc. 125 (2003) 13602-13608.
    [28]
    Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L., Adv. Mater. 29 (2017) 1601759.
    [29]
    Wang, X.; Li, X.; Fan, H.; Miao, M.; Zhang, Y.; Guo, W.; Fu, Y., J. Energy Chem. 67 (2022) 276-289.
    [30]
    Zheng, Y.; Yi, Y.; Fan, M.; Liu, H.; Li, X.; Zhang, R.; Li, M.; Qiao, Z.-A., Energy Storage Materials 23 (2019) 678-683.
    [31]
    Peng, Y.; Zhang, Y.; Wang, Y.; Shen, X.; Wang, F.; Li, H.; Hwang, B. J.; Zhao, J., ACS Appl. Mater. Interfaces 9 (2017) 29804-29811.
    [32]
    Xu, R.; Du, L.; Adekoya, D.; Zhang, G.; Zhang, S.; Sun, S.; Lei, Y., Adv. Energy Mater. 11 (2020) 2001537.
    [33]
    Zhao, H.; Lei, Y., Adv. Energy Mater. 10 (2020) 2001460.
    [34]
    Sun, W.; Liu, C.; Li, Y.; Luo, S.; Liu, S.; Hong, X.; Xie, K.; Liu, Y.; Tan, X.; Zheng, C., ACS Nano 13 (2019) 12137-12147.
    [35]
    Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D., Adv. Mater. 23 (2011) 5641-5644.
    [36]
    Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; Yang, Q.-H., Nano Energy 33 (2017) 306-312.
    [37]
    Ahn, W.; Park, M. G.; Lee, D. U.; Seo, M. H.; Jiang, G.; Cano, Z. P.; Hassan, F. M.; Chen, Z., Adv. Funct. Mater. 28 (2018) 1802129.
    [38]
    Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z. W.; Zhuo, D.; Liu, Y.; Sun, J.; Zhao, J.; Zu, C.; Wu, D. S.; Zhang, Q.; Cui, Y., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 840-845.
    [39]
    Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J.; Sin, H.; Li, L.; Tang, Z., Adv. Mater. 29 (2017) 1606817.
    [40]
    Wu, K.; Hu, Y.; Cheng, Z.; Pan, P.; Jiang, L.; Mao, J.; Ni, C.; Gu, X.; Wang, Z., J. Membr. Sci. 592 (2019) 117349.
    [41]
    Jiang, S.; Chen, M.; Wang, X.; Zhang, Y.; Huang, C.; Zhang, Y.; Wang, Y., Chem. Eng. J. 355 (2019) 478-486.
    [42]
    Tan, L.; Li, X.; Wang, Z.; Guo, H.; Wang, J., ACS Appl. Mater. Interfaces 10 (2018) 3707-3713.
    [43]
    Huang, J.-Q.; Xu, Z.-L.; Abouali, S.; Akbari Garakani, M.; Kim, J.-K., Carbon 99 (2016) 624-632.
    [44]
    Zhou, T.; Lv, W.; Li, J.; Zhou, G.; Zhao, Y.; Fan, S.; Liu, B.; Li, B.; Kang, F.; Yang, Q.-H., Energy Environ. Sci. 10 (2017) 1694-1703.
    [45]
    Dong, Y.; Zheng, S.; Qin, J.; Zhao, X.; Shi, H.; Wang, X.; Chen, J.; Wu, Z. S., ACS Nano 12 (2018) 2381-2388.
    [46]
    Luo, Y.; Luo, N.; Kong, W.; Wu, H.; Wang, K.; Fan, S.; Duan, W.; Wang, J., Small 14 (2018) 1702853.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (188) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return