Volume 9 Issue 5
May  2024
Turn off MathJax
Article Contents
Peng Gao, Pei Tang, Ying Mo, Peitao Xiao, Wang Zhou, Shi Chen, Hongliang Dong, Ziwei Li, Chaohe Xu, Jilei Liu. Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage. Green Energy&Environment, 2024, 9(5): 909-918. doi: 10.1016/j.gee.2022.10.003
Citation: Peng Gao, Pei Tang, Ying Mo, Peitao Xiao, Wang Zhou, Shi Chen, Hongliang Dong, Ziwei Li, Chaohe Xu, Jilei Liu. Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage. Green Energy&Environment, 2024, 9(5): 909-918. doi: 10.1016/j.gee.2022.10.003

Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage

doi: 10.1016/j.gee.2022.10.003
  • Manganese cobaltite (MnCo2O4) is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability. Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into δ-MnO2 nanosheets irreversibly, thus results in a change of the reaction mechanism with K+ ion intercalation. However, the low capacity has greatly limited its practical application. Herein, we found that the tetrahedrally-coordinated Co2+ ions were leached when MnCo2O4 was equilibrated in 1 mol L-1 HCl solution, leading to the formation of layered CoOOH on MnCo2O4 surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free CoO6 octahedra. The as-formed CoOOH is stable upon cycling in alkaline electrolyte, exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution, thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion. In general, our work not only offers a feasible approach to deliberate modification of MnCo2O4's surface structure, but also provides an in-depth understanding of its charge storage mechanism, which enables rational design of the spinel oxides with promising charge storage properties.

     

  • loading
  • [1]
    Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45 (2016) 5925-5950.
    [2]
    P. Gao, Y. Zeng, P. Tang, Z. Wang, J. Yang, A. Hu, J. Liu, Adv. Funct. Mater. 32 (2022) 2108644.
    [3]
    P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu, D. D. Edwards, J. Y. Howe, R. Huang, S. T. Misture, Nat. Commun. 8 (2017) 14559.
    [4]
    Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui, S. Li, F. Pan, Adv. Mater. 32 (2020) 2002450.
    [5]
    J. Ran, H. Liu, H. Dong, P. Gao, H. Cheng, J. Xu, H. Wang, Z. Wang, Q. Fu, J. Yan, J. Liu, Green Energy Environ. (2023) doi: DOI: 10.1016/j.gee.2022.02.008.
    [6]
    D. Gao, Z. Luo, C. Liu, S. Fan, Green Energy Environ. (2022) doi: 10.1016/j.gee.2022.02.002.
    [7]
    S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo, S. Angaiah, Green Energy Environ. 5 (2020) 259-273.
    [8]
    X. Yu, S. Yun, J. S. Yeon, P. Bhattacharya, L. Wang, S. W. Lee, X. Hu, H. S. Park, Adv. Energy Mater. 8 (2018) 1702930.
    [9]
    R. Chen, M. Yu, R. P. Sahu, I. K. Puri, I. Zhitomirsky, Adv. Energy Mater. 10 (2020) 1903848.
    [10]
    A. Ehsani, A. A. Heidari, H. M. Shiri, Chem. Rec. 19 (2019) 908-926.
    [11]
    J.-G. Seong, T. H. Ko, D. Lei, W.-K. Choi, Y.-S. Kuk, M.-K. Seo, B.-S. Kim, Green Energy Environ. 7 (2022) 1228-1240.
    [12]
    W. Yang, L. Hou, P. Wang, Y. Li, R. Li, B. Jiang, F. Yang, Y. Li, Green Energy Environ. 7 (2022) 723-733.
    [13]
    B. Lan, Y. Xiang, X. Luo, D. Wu, L. Zhang, J. Duan, M. Guo, Y. Ito, Y. Liu, Chem. Eng. J. 430 (2022) 132886.
    [14]
    J. Li, D. Xiong, L. Wang, M. K. S. Hirbod, X. Li, J. Energy Chem. 37 (2019) 66-72.
    [15]
    Y. Zhao, L. Hu, S. Zhao, L. Wu, Adv. Funct. Mater. 26 (2016) 4085-4093.
    [16]
    J. Mu, C. Li, J. Zhang, X. Song, S. Chen, F. Xu, Green Energy Environ. 8 (2023).
    [17]
    J. Li, S. Xiong, X. Li, Y. Qian, Nanoscale 5 (2013) 2045-2054.
    [18]
    G. Li, L. Xu, Y. Zhai, Y. Hou, J. Mater. Chem. A 3 (2015) 14298-14306.
    [19]
    Y. Gao, Y. Xia, H. Wan, X. Xu, S. Jiang, Electrochim. Acta 301 (2019) 294-303.
    [20]
    J.-J. Zhou, X. Han, K. Tao, Q. Li, Y.-L. Li, C. Chen, L. Han, Chem. Eng. J. 354 (2018) 875-884.
    [21]
    S. D. Perera, X. Ding, A. Bhargava, R. Hovden, A. Nelson, L. F. Kourkoutis, R. D. Robinson, Chem. Mater. 27 (2015) 7861-7873.
    [22]
    S. Liu, D. Ni, H.-F. Li, K. N. Hui, C.-Y. Ouyang, S. C. Jun, J. Mater. Chem. A 6 (2018) 10674-10685.
    [23]
    A. Krittayavathananon, T. Pettong, P. Kidkhunthod, M. Sawangphruk, Electrochim. Acta 258 (2017) 1008-1015.
    [24]
    P. Tang, P. Gao, X. Cui, Z. Chen, Q. Fu, Z. Wang, Y. Mo, H. Liu, C. Xu, J. Liu, J. Yan, S. Passerini, Adv. Energy Mater. 12 (2022) 2102053.
    [25]
    Y. Zhao, C. Chang, F. Teng, Y. Zhao, G. Chen, R. Shi, G. I. N. Waterhouse, W. Huang, T. Zhang, Adv. Energy Mater. 7 (2017) 1700005.
    [26]
    L. Yan, L. Niu, C. Shen, Z. Zhang, J. Lin, F. Shen, Y. Gong, C. Li, X. Liu, S. Xu, Electrochim. Acta 306 (2019) 529-540.
    [27]
    Y. Lai, P. Wang, F. Qin, M. Xu, J. Li, K. Zhang, Z. Zhang, Energy Storage Mater. 9 (2017) 179-187.
    [28]
    T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, Nat. Catal. 2 (2019) 763-772.
    [29]
    Y. Duan, J. Y. Lee, S. Xi, Y. Sun, J. Ge, S. J. H. Ong, Y. Chen, S. Dou, F. Meng, C. Diao, A. C. Fisher, X. Wang, G. G. Scherer, A. Grimaud, Z. J. Xu, Angew. Chem. Int. Edit. 60 (2021) 7418-7425.
    [30]
    T. Dong, W. Yi, T. Deng, T. Qin, X. Chu, H. Yang, L. Zheng, S. Jo Yoo, J.-G. Kim, Z. Wang, Y. Wang, W. Zhang, W. Zheng, Energy Enriron. Mater. 6 (2023) e12262.
    [31]
    L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X. W. Lou, Angew. Chem. Int. Edit. 54 (2015) 1868-1872.
    [32]
    X. Pan, F. Ji, L. Kuang, F. Liu, Y. Zhang, X. Chen, K. Alameh, B. Ding, Electrochim. Acta 215 (2016) 298-304.
    [33]
    J. Mei, W. Fu, Z. Zhang, X. Jiang, H. Bu, C. Jiang, E. Xie, W. Han, Energy 139 (2017) 1153-1158.
    [34]
    V. K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.-J. Kim, Electrochim. Acta 265 (2018) 514-522.
    [35]
    P. Gao, Y. Gong, N. P. Mellott, D. Liu, Electrochim. Acta 173 (2015) 31-39.
    [36]
    P. Gao, D. Liu, Sensor. Actuat. B-Chem. 208 (2015) 346-354.
    [37]
    P. Gao, D. Liu, RSC Adv. 5 (2015) 24625-24634.
    [38]
    J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang, M. Anayee, F. Pan, B. Xu, Y. Gogotsi, Adv. Energy Mater. 11 (2021) 2003025.
    [39]
    Y. Zhang, Y. Hu, Z. Wang, T. Lin, X. Zhu, B. Luo, H. Hu, W. Xing, Z. Yan, L. Wang, Adv. Funct. Mater. 30 (2020) 2004172.
    [40]
    A. Stott, M. O. Tas, E. Y. Matsubara, M. G. Masteghin, J. M. Rosolen, R. A. Sporea, S. R. P. Silva, Energy Enriron. Mater. 3 (2020) 389-397.
    [41]
    J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z. X. Shen, Adv. Sci. 5 (2018) 1700322.
    [42]
    R. Huang, J. Lin, J. Zhou, E. Fan, X. Zhang, R. Chen, F. Wu, L. Li, Small 17 (2021) 2007597.
    [43]
    B. Sriram, J. N. Baby, S.-F. Wang, M. George, X. B. Joseph, J.-T. Tsai, ACS Appl. Electron. Mater. 3 (2021) 362-372.
    [44]
    N. H. Kwon, X. Jin, S.-J. Kim, H. Kim, S.-J. Hwang, Adv. Sci. 9 (2022) 2103042.
    [45]
    X. Jin, T.-H. Gu, N. H. Kwon, S.-J. Hwang, Adv. Mater. 33 (2021) 2005922.
    [46]
    H.-Y. Wang, S.-F. Hung, H.-Y. Chen, T.-S. Chan, H. M. Chen, B. Liu, J. Am. Chem. Soc. 138 (2016) 36-39.
    [47]
    A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi, D. Hashizume, Q. Jiang, H. Han, J. Xiao, R. Nakamura, Nat. Catal. 5 (2022) 109-118.
    [48]
    T. Ling Ling, M. Ahmad, L. Yook Heng, Anal. Methods 5 (2013) 6709-6714.
    [49]
    R. Jin, Y. Meng, Y. Ma, H. Li, Y. Sun, G. Chen, Electrochim. Acta 209 (2016) 163-170.
    [50]
    V. Venkatachalam, A. Alsalme, A. Alghamdi, R. Jayavel, J. Electroanal. Chem. 756 (2015) 94-100.
    [51]
    W. Zhang, Z. Yang, Y. Liu, S. Tang, X. Han, M. Chen, J. Cryst. Growth 263 (2004) 394-399.
    [52]
    Y. C. Zhang, T. Qiao, X. Y. Hu, W. D. Zhou, J. Cryst. Growth 280 (2005) 652-657.
    [53]
    D. Zhang, L. Zhang, C. Fang, R. Gao, Y. Qian, L. Shi, J. Zhang, RSC Adv. 3 (2013) 8811-8819.
    [54]
    D. Chinnadurai, M. Nallal, H.-J. Kim, O. L. Li, K. H. Park, K. Prabakar, ChemCatChem 12 (2020) 2348-2355.
    [55]
    X. Shan, F. Guo, K. Page, J. C. Neuefeind, B. Ravel, A. M. M. Abeykoon, G. Kwon, D. Olds, D. Su, X. Teng, Chem. Mater. 31 (2019) 8774-8786.
    [56]
    P. Shi, X. Dai, H. Zheng, D. Li, W. Yao, C. Hu, Chem. Eng. J. 240 (2014) 264-270.
    [57]
    J. Wang, T. Xie, Q. Deng, Y. Wang, Q. Zhu, S. Liu, New J. Chem. 43 (2019) 3218-3225.
    [58]
    A. Diaz-Hernandez, J. Gracida, B. E. Garcia-Almendarez, C. Regalado, R. Nunez, A. Amaro-Reyes, J. Nanomater. 2018 (2018).
    [59]
    H. Zhang, X. Deng, H. Huang, G. Li, X. Liang, W. Zhou, J. Guo, W. Wei, S. Tang, Electrochim. Acta 289 (2018) 193-203.
    [60]
    X. Wang, Z. Pan, X. Chu, K. Huang, Y. Cong, R. Cao, R. Sarangi, L. Li, G. Li, S. Feng, Angew. Chem. Int. Edit. 58 (2019) 11720-11725.
    [61]
    Y. Sun, H. Liao, J. Wang, B. Chen, S. Sun, S. J. H. Ong, S. Xi, C. Diao, Y. Du, J.-O. Wang, M. B. H. Breese, S. Li, H. Zhang, Z. J. Xu, Nat. Catal. 3 (2020) 554-563.
    [62]
    L. Yang, S. Cheng, J. Wang, X. Ji, Y. Jiang, M. Yao, P. Wu, M. Wang, J. Zhou, M. Liu, Nano Energy 30 (2016) 293-302.
    [63]
    S. Bag, C. R. Raj, J. Mater. Chem. A 4 (2016) 8384-8394.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return