Volume 9 Issue 5
May  2024
Turn off MathJax
Article Contents
Bin Ma, Lisheng Zhang, Wentao Wang, Hanqing Yu, Xianbin Yang, Siyan Chen, Huizhi Wang, Xinhua Liu. Application of deep learning for informatics aided design of electrode materials in metal-ion batteries. Green Energy&Environment, 2024, 9(5): 877-889. doi: 10.1016/j.gee.2022.10.002
Citation: Bin Ma, Lisheng Zhang, Wentao Wang, Hanqing Yu, Xianbin Yang, Siyan Chen, Huizhi Wang, Xinhua Liu. Application of deep learning for informatics aided design of electrode materials in metal-ion batteries. Green Energy&Environment, 2024, 9(5): 877-889. doi: 10.1016/j.gee.2022.10.002

Application of deep learning for informatics aided design of electrode materials in metal-ion batteries

doi: 10.1016/j.gee.2022.10.002
  • To develop emerging electrode materials and improve the performances of batteries, the machine learning techniques can provide insights to discover, design and develop battery new materials in high-throughput way. In this paper, two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage, specific capacity and specific energy. The deep learning models are trained with the multilayer perceptron as the core. The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models. Based on 10 types of ion batteries, the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V, respectively. The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms. Besides, the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries. This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.

     

  • loading
  • [1]
    P. Wu, X. Wu, Y. Wang, J. Zhao, H. Xu, G. Owens, Green Energy Environ. 8 (2023) 1459-1468.
    [2]
    Q. Lu, Y. Jie, X. Meng, A. Omar, D. Mikhailova, R. Cao, S. Jiao, Y. Lu, Y. Xu, Carbon Energy 3 (2021) 957-975.
    [3]
    P. Yang, X. Yang, W. Liu, R. Guo, Z. Yao, Green Energy Environ. 8 (2023) 1265-1275.
    [4]
    C. Duan, Y. Yu, J. Xiao, Y. Li, P. Yang, F. Hu, H. Xi, Green Energy Environ. 6 (2021) 33-49.
    [5]
    X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Green Energy Environ. 5 (2020) 22-36.
    [6]
    H. You, J. Zhu, X. Wang, B. Jiang, H. Sun, X. Liu, X. Wei, G. Han, S. Ding, H. Yu, W. Li, D.U. Sauer, H. Dai, J. Energy Chem. 72 (2022) 333-341.
    [7]
    C. Lin, W. Kong, Y. Tian, W. Wang, M. Zhao, Automot. Innov. 5 (2022) 3-17.
    [8]
    R.P. Joshi, B. Ozdemir, V. Barone, J.E. Peralta, J. Phys. Chem. Lett. 6 (2015) 2728-2732.
    [9]
    K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Sci. Adv. 4 (2018). https://doi.org/10.1126/sciadv.aas9820.
    [10]
    H. Tao, C. Lian, H. Liu, Green Energy Environ. 5 (2020) 303-321.
    [11]
    X. Zhang, B. Tang, Z. Zhou, Green Energy Environ. 6 (2021) 3-4.
    [12]
    J. Wang, Green Energy Environ. 5 (2020) 122-123.
    [13]
    J. Galos, K. Pattarakunnan, A.S. Best, I.L. Kyratzis, C.H. Wang, A.P. Mouritz, Adv. Mater. Technol. 6 (2021) 1-19.
    [14]
    J. Mao, J. Miao, Y. Lu, Z. Tong, Chinese J. Chem. Eng. 37 (2021) 1-11.
    [15]
    S. Zhao, Z. Guo, K. Yan, S. Wan, F. He, B. Sun, G. Wang, Energy Storage Mater. 34 (2021) 716-734.
    [16]
    Y. Yang, Green Energy Environ. 5 (2020) 382-384.
    [17]
    A. Ullah, A. Majid, N. Rani, J. Energy Chem. 27 (2018) 219-237.
    [18]
    M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon 38 (2000) 183-197.
    [19]
    R.N. Methekar, P.W.C. Northrop, K. Chen, R.D. Braatz, J. Electrochem. Soc. 158 (2011) 363-370.
    [20]
    T.P. Kaloni, R.P. Joshi, N.P. Adhikari, U. Schwingenschlogl, Appl. Phys. Lett. 104 (2014). https://doi.org/10.1063/1.4866383.
    [21]
    J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Jom 65 (2013) 1501-1509.
    [22]
    S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Ruhl, C. Wolverton, Npj Comput. Mater. 1 (2015). https://doi.org/10.1038/npjcompumats.2015.10.
    [23]
    S.P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, K.A. Persson, Comput. Mater. Sci. 97 (2015) 209-215.
    [24]
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (2013). https://doi.org/10.1063/1.4812323.
    [25]
    S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R. V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D. Morgan, Comput. Mater. Sci. 58 (2012) 218-226.
    [26]
    E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, S. Curtarolo, Comput. Mater. Sci. 152 (2018) 134-145.
    [27]
    C. Draxl, M. Scheffler, MRS Bull. 43 (2018) 676-682.
    [28]
    Srinivasan, K. Rajan, Materials 6 (2013) 279–290.
    [29]
    L.M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114 (2015) 1-5.
    [30]
    C.S. Kong, W. Luo, S. Arapan, P. Villars, S. Iwata, R. Ahuja, K. Rajan, J. Chem. Inf. Model. 52 (2012) 1812-1820.
    [31]
    S. Yang, R. He, Z. Zhang, Y. Cao, X. Gao, X. Liu, Matter 3 (2020) 27-41.
    [32]
    S. Yang, Z. Zhang, R. Cao, M. Wang, H. Cheng, L. Zhang, Y. Jiang, Y. Li, B. Chen, H. Ling, Y. Lian, B. Wu, X. Liu, Energy AI 5 (2021) 100088.
    [33]
    X. Liu, L. Zhang, H. Yu, J. Wang, J. Li, K. Yang, Y. Zhao, H. Wang, B. Wu, N.P. Brandon, S. Yang, Adv. Energy Mater. 12 (2022) 2200889.
    [34]
    R.P. Joshi, J. Eickholt, L. Li, M. Fornari, V. Barone, J.E. Peralta, ACS Appl. Mater. Interfaces 11 (2019) 18494-18503.
    [35]
    L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, Npj Comput. Mater. 2 (2016) 1-7.
    [36]
    B. Liu, J. Yang, H. Yang, C. Ye, Y. Mao, J. Wang, S. Shi, J. Yang, W. Zhang, J. Mater. Chem. A 7 (2019) 19961-19969.
    [37]
    V. Nulu, A. Nulu, M.G. Kim, K.Y. Sohn, Int. J. Electrochem. Sci. 13 (2018) 5565-5574.
    [38]
    T. Sarkar, A. Sharma, A.K. Das, D. Deodhare, M.D. Bharadwaj, Proc. IEEE Int. Caracas Conf. Devices, Circuits Syst. ICCDCS (2014) 12-14.
    [39]
    A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95 (2017) 1-11.
    [40]
    A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Phys. Rev. B - Condens. Matter Mater. Phys. 89 (2014) 1-9.
    [41]
    A.D. Sendek, Q. Yang, E.D. Cubuk, K.A.N. Duerloo, Y. Cui, E.J. Reed, Energy Environ. Sci. 10 (2017) 306-320.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (280) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return