Xing Fu, Yexin Hu, Ping Hu, Hui Li, Shuguang Xu, Liangfang Zhu, Changwei Hu. Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water. Green Energy&Environment, 2024, 9(6): 1016-1026. doi: 10.1016/j.gee.2022.09.012
Citation: Xing Fu, Yexin Hu, Ping Hu, Hui Li, Shuguang Xu, Liangfang Zhu, Changwei Hu. Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water. Green Energy&Environment, 2024, 9(6): 1016-1026. doi: 10.1016/j.gee.2022.09.012

Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water

doi: 10.1016/j.gee.2022.09.012
  • The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural (HMF) in biorefinery. Here, a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water is delineated by combined experimental, spectroscopic, and theoretical studies. Three bimolecular reaction pathways to build up soluble humins are demonstrated. That is, the intermolecular etherification of β-furanose at room temperature initiates the C12 path, whereas the C-C cleavage of α-furanose at 130-150 ℃ leads to C11 path, and that of open-chain fructose at 180 ℃ to C11' path. The successive intramolecular dehydrations and condensations of the as-formed bimolecular intermediates lead to three types of soluble humins. We show that the C12 path could be restrained by using HCl or AlCl3 catalyst, and both the C12 and C11' paths could be effectively inhibited by adding THF as a co-solvent or accelerating heating rate via microwave heating.

     

  • [1]
    C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poliakoff, Science 337 (2012) 695-699] has/have not been found in the reference list. Please add the corresponding reference(s) to the reference list.>.
    [2]
    T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 330 (2010) 1222-1227.
    [3]
    Y. Queneau, B. Han, The Innovation (2021) 100184.
    [4]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P. T. T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.1007.1003.
    [5]
    J. J. Bozell, G. R. Petersen, Green Chem. 12 (2010) 539-554.
    [6]
    K. I. Galkin, V. P. Ananikov, ChemSusChem 12 (2019) 2976-2982.
    [7]
    H. Liu, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, J. Zhang, L. Lin, Green Energy Environ. 7 (2022) 900-932.
    [8]
    T. M. C. Hoang, E. Van Eck, W. Bula, J. G. Gardeniers, L. Lefferts, K. Seshan, Green Chem. 17 (2015) 959-972.
    [9]
    L. Zhu, X. Fu, Y. Hu, C. Hu, ChemSusChem 13 (2020) 4812-4832.
    [10]
    D. Hu, M. Zhang, H. Xu, Y. Wang, K. Yan, Renewable Sustainable Energy Rev. 147 (2021) 111253.
    [11]
    T. D. Swift, C. Bagia, V. Choudhary, G. Peklaris, V. Nikolakis, D. G. Vlachos, ACS Catal. 4 (2014) 259-267.
    [12]
    T. D. Swift, H. Nguyen, A. Anderko, V. Nikolakis, D. G. Vlachos, Green Chem. 17 (2015) 4725-4735.
    [13]
    T. D. Swift, H. Nguyen, Z. Erdman, J. S. Kruger, V. Nikolakis, D. G. Vlachos, J. Catal. 333 (2016) 149-161.
    [14]
    J. Tang, L. Zhu, X. Fu, J. Dai, X. Guo, C. Hu, ACS Catal. 7 (2017) 256-266.
    [15]
    Z. Cheng, K. A. Goulas, N. Q. Rodriguez, B. Saha, D. G. Vlachos, Green Chem. 22 (2020) 2301-2309.
    [16]
    M.-M. Titirici, R. J. White, C. Falco, M. Sevilla, Energy Environ. Sci. 5 (2012) 6796-6822.
    [17]
    N. Shi, Q. Liu, Q. Zhang, T. Wang, L. Ma, Green Chem. 15 (2013) 1967-1974.
    [18]
    Q. Xu, X. Hu, Y. Shao, K. Sun, P. Jia, L. Zhang, Q. Liu, Y. Wang, S. Hu, J. Xiang, Carbohydr. Polym. 216 (2019) 167-179.
    [19]
    A. Al Ghatta, X. Zhou, G. Casarano, J. D. Wilton-Ely, J. P. Hallett, ACS Sustainable Chem. Eng. 9 (2021) 2212-2223.
    [20]
    B. Saha, M. M. Abu-Omar, Green Chem. 16 (2014) 24-38.
    [21]
    Y. Yang, C. W. Hu, M. M. Abu-Omar, Green Chem. 14 (2012) 509-513.
    [22]
    Y. Yang, C. Hu, M. M. Abu-Omar, ChemSusChem 5 (2012) 405-410.
    [23]
    L. Wang, H. Wang, F. Liu, A. Zheng, J. Zhang, Q. Sun, J. P. Lewis, L. Zhu, X. Meng, F. S. Xiao, ChemSusChem 7 (2014) 402-406.
    [24]
    L. Zhu, J. Dai, M. Liu, D. Tang, S. Liu, C. Hu, ChemSusChem 9 (2016) 2174-2181.
    [25]
    J. Dai, L. Zhu, D. Tang, X. Fu, J. Tang, X. Guo, C. Hu, Green Chem. 19 (2017) 1932-1939.
    [26]
    S. Karwa, V. M. Gajiwala, J. Heltzel, S. K. Patil, C. R. Lund, Catal. Today 263 (2016) 16-21.
    [27]
    P. Ramesh, A. Kritikos, G. Tsilomelekis, React. Chem. Eng. 4 (2019) 273-277.
    [28]
    X. Fu, Y. Hu, Y. Zhang, Y. Zhang, D. Tang, L. Zhu, C. Hu, ChemSusChem 13 (2020) 501-512.
    [29]
    K. Iris, D.C. Tsang, Bioresour. Technol. 238 (2017) 716-732.
    [30]
    T. Wang, M.W. Nolte, B. H. Shanks, Green Chem. 16 (2014) 548-572.
    [31]
    S. Luan, W. Li, Z. Guo, W. Li, X. Hou, Y. Song, R. Wang, Q. Wang, Green Energy Environ. 7 (2021) 1033-1044.
    [32]
    L. Atanda, A. Shrotri, S. Mukundan, Q. Ma, M. Konarova, J. Beltramini, ChemSusChem 8 (2015) 2907-2916.
    [33]
    L. Li, F. Shen, R. L. Smith, X. Qi, Green Chem. 19 (2017) 76-81.
    [34]
    G. Klaerner, R. Miller, Macromol. 31 (1998) 2007-2009.
    [35]
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    [36]
    R.G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922-1924.
    [37]
    A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113 (2009) 4538-4543.
    [38]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
    [39]
    C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 90 (1989) 2154-2161.
    [40]
    H. S. Kim, S. K. Kim, G. T. Jeong, J. Ind. Eng. Chem. 63 (2018) 48-56.
    [41]
    W. Deng, Q. Zhang, Y. Wang, Catal. Today 234 (2014) 31-41.
    [42]
    M. Asakawa, A. Shrotri, H. Kobayashi, A. Fukuoka, Green Chem. 21 (2019) 6146-6153.
    [43]
    N. Shi, Q. Liu, H. Cen, R. Ju, X. He, L. Ma, Biomass Convers. Biorefin. 10 (2020) 277-287.
    [44]
    H. Shen, H. Shan, L. Liu, ChemSusChem 13 (2020) 513-519.
    [45]
    G. R. Akien, L. Qi, I. T. Horvath, Chem. Commun. 48 (2012) 5850-5852.
    [46]
    G. Tsilomelekis, M. J. Orella, Z. Lin, Z. Cheng, W. Zheng, V. Nikolakis, D. G. Vlachos, Green Chem. 18 (2016) 1983-1993.
    [47]
    X. Fu, J. Dai, X. Guo, J. Tang, L. Zhu, C. Hu, Green Chem. 19 (2017) 3334-3343.
    [48]
    S. D. P. S. Pereira, J. O. S. Varejao, De Fatima, S. A. Fernandes, Ind. Crops Prod. 138 (2019) 111492.
    [49]
    Y. Wang, X. Yang, H. Zheng, X. Li, Y. Zhu, Y. Li, Mol. Catal. 463 (2019) 130-139.
    [50]
    Y. Wang, G. Ding, X. Yang, H. Zheng, Y. Zhu, Y. Li, Appl. Catal., B 235 (2018) 150-157.
    [51]
    J. Cui, J. Tan, T. Deng, X. Cui, Y. Zhu, Y. Li, Green Chem. 18 (2016) 1619-1624.
    [52]
    R. Li, Q. Lin, J. Ren, X. Yang, Y. Wang, L. Kong, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.1006.1003.
    [53]
    W. Hongsiri, B. Danon, W. De Jong, Int. J. Energy Environ. Eng. 6 (2015) 21-30.
    [54]
    J.-J. Max, C. Chapados, J. Phys. Chem. A 111 (2007) 2679-2689.
    [55]
    T. Barclay, M. Ginic-Markovic, M. R. Johnston, P. Cooper, N. Petrovsky, Carbohydr. Res. 347 (2012) 136-141.
    [56]
    H. Kimura, M. Nakahara, N. Matubayasi, J. Phys. Chem. A 115 (2011) 14013-14021.
    [57]
    H. Kimura, M. Nakahara, N. Matubayasi, J. Phys. Chem. A 117 (2013) 2102-2113.
    [58]
    D. C. Mccain, J. L. Markley, J. Am. Chem. Soc. 108 (1986) 4259-4264.
    [59]
    H. Wang, J. Chem. Educ. 82 (2005) 1340.
    [60]
    W. Deng, P. Wang, B. Wang, Y. Wang, L. Yan, Y. Li, Q. Zhang, Z. Cao, Y. Wang, Green Chem. 20 (2018) 735-744.
    [61]
    P. Gao, G. Li, F. Yang, X. Lv, H. Fan, L. Meng, X. Yu, Ind. Crops Prod. 48 (2013) 61-67.
    [62]
    E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, K. Malek, Spectrochim. Acta, Part A 185 (2017) 317-335.
    [63]
    G. Yang, E.A. Pidko, E.J. Hensen, J. Catal. 295 (2012) 122-132.
    [64]
    C. Virues, J. Hernandez, I. Higuera-Ciapara, E. Martinez-Benavidez, J. L. Olivares-Romero, R. E. Navarro, M. Inoue, Carbohydr. Res. 490 (2020) 107952.
    [65]
    V. Ordomsky, J. Van Der Schaaf, J. Schouten, T. Nijhuis, J. Catal. 287 (2012) 68-75.
    [66]
    V. Vasudevan, S. H. Mushrif, RSC Adv. 5 (2015) 20756-20763.
    [67]
    E. Nikolla, Y. Roman-Leshkov, M. Moliner, M.E. Davis, ACS Catal. 1 (2011) 408-410.
  • Relative Articles

    [1]Xiaoqian Zhang, Haishan Zhang, Guowen Zhou, Zhiping Su, Xiaohui Wang. Flexible, thermal processable, self-healing, and fully bio-based starch plastics by constructing dynamic imine network.  Green Energy&Environment, 2024, 9(10): 1610-1618. doi: 10.1016/j.gee.2023.08.002
    [2]Zhikeng Zheng, Ke Li, Lu Lin, Zhiwei Jiang, Yuchen Wang, Kai Yan. Recent advances on the electrocatalytic oxidation of biomass-derived aldehydes.  Green Energy&Environment. doi: 10.1016/j.gee.2024.09.004
    [3]Hengli Qian, keyuan Zhang, Yongchuo He, Qidong Hou, Chao Xie, Ruite Lai, Guanjie Yu, Tianliang Xia, Xinyu Bai, Haijiao Xie, Meiting Ju. Engineering crystal plane of NiCo2O4 to regulate oxygen vacancies and acid sites for alkali-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid.  Green Energy&Environment. doi: 10.1016/j.gee.2024.05.002
    [4]Jie Liang, Jianchun Jiang, Tingting Cai, Chao Liu, Jun Ye, Xianhai Zeng, Kui Wang. Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural.  Green Energy&Environment, 2024, 9(9): 1384-1406. doi: 10.1016/j.gee.2023.11.005
    [5]Yanlin Qin, Yunzhen Chen, Xuezhi Zeng, Yingchun Liu, Xuliang Lin, Wenli Zhang, Xueqing Qiu. MoNi4-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction.  Green Energy&Environment, 2023, 8(6): 1728-1736. doi: 10.1016/j.gee.2022.04.005
    [6]Yang Yang, Chaoyue Zhao, Xianliang Qiao, Qingxin Guan, Wei Li. Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination.  Green Energy&Environment, 2023, 8(4): 1141-1153. doi: 10.1016/j.gee.2022.01.006
    [7]Daqiang Yan, Lin Zhang, Lei Shen, Runyu Hu, Weiping Xiao, Xiaofei Yang. Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media.  Green Energy&Environment, 2023, 8(4): 1205-1215. doi: 10.1016/j.gee.2022.01.011
    [8]Ke Zhao, Yuanxiang Shu, Fengxiang Li, Guosong Peng. Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review.  Green Energy&Environment, 2023, 8(4): 1043-1070. doi: 10.1016/j.gee.2022.10.007
    [9]Weiyao Yang, Mengchen Fu, Chenyu Yang, Yiwen Zhang, Chun Shen. Auδ--Ov-Ti3+: Active site of MOx-Au/TiO2 catalysts for the aerobic oxidation of 5-hydroxymethylfurfural.  Green Energy&Environment, 2023, 8(3): 785-797. doi: 10.1016/j.gee.2021.09.006
    [10]Xinyu Luo, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. Understanding of the electrochemical behaviors of aqueous zinc–manganese batteries: Reaction processes and failure mechanisms.  Green Energy&Environment, 2022, 7(5): 858-899. doi: 10.1016/j.gee.2021.08.006
    [11]Huai Liu, Xing Tang, Xianhai Zeng, Yong Sun, Xixian Ke, Tianyuan Li, Jiaren Zhang, Lu Lin. Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural.  Green Energy&Environment, 2022, 7(5): 900-932. doi: 10.1016/j.gee.2021.10.004
    [12]Suojiang Zhang. Celebrating the 5th year of Green Energy & Environment (GEE).  Green Energy&Environment, 2021, 6(1): 1-2. doi: 10.1016/j.gee.2021.02.007
    [13]Shengnan Li, Shih-Hsin Ho, Tao Hua, Qixing Zhou, Fengxiang Li, Jingchun Tang. Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells.  Green Energy&Environment, 2021, 6(5): 644-659. doi: 10.1016/j.gee.2020.11.010
    [14]Xinming Du, Hongyu Zhang, Yongjiang Yuan, Zhe Wang. Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride).  Green Energy&Environment, 2021, 6(5): 743-750. doi: 10.1016/j.gee.2020.06.015
    [15]Jinhang Dai. Synthesis of 2,5-diformylfuran from renewable carbohydrates and its applications: A review.  Green Energy&Environment, 2021, 6(1): 22-32. doi: 10.1016/j.gee.2020.06.013
    [16]Mingjie Zhang, Chen Han, Wenyao Chen, Wei Luo, Yueqiang Cao, Gang Qian, Xinggui Zhou, Xiaoguang Duan, Shaobin Wang, Xuezhi Duan. Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal.  Green Energy&Environment, 2020, 5(4): 444-452. doi: 10.1016/j.gee.2020.05.006
    [17]Lei Liu, Binit Lukose, Pablo Jaque, Bernd Ensing. Reaction mechanism of hydrogen activation by frustrated Lewis pairs.  Green Energy&Environment, 2019, 4(1): 20-28. doi: 10.1016/j.gee.2018.06.001
    [18]Jie Wang, Min Liu, Mei Wang, Yi Wang, Aiting Zhang, Xiang Zhao, Guisheng Zeng, Fang Deng. Bandgap engineering of hierarchical network-like SnIn4S8 microspheres through preparation temperature for excellent photocatalytic performance and high stability.  Green Energy&Environment, 2019, 4(3): 264-269. doi: 10.1016/j.gee.2019.04.002
    [19]Yangyang Zhang, Xinli Tong, Linhao Yu, Lingwu Meng, Pengfei Guo, Song Xue. Highly efficient catalytic valorization of biomass-derived hexoses and furfuryl alcohol in the presence of polymer-based catalysts.  Green Energy&Environment, 2019, 4(4): 424-431. doi: 10.1016/j.gee.2019.01.006
    [20]Zheng Xi, Adriana Mendoza-Garcia, Huiyuan Zhu, MiaoFang Chi, Dong Su, Daniel P. Erdosy, Junrui Li, Shouheng Sun. NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction.  Green Energy&Environment, 2017, 2(2): 119-123. doi: 10.1016/j.gee.2017.01.001
  • Cited by

    Periodical cited type(13)

    1. Xusheng, G., Chuan, Q., Yuxi, S. et al. Ultra-Dilute SnCl4-Catalyzed Conversion of Concentrated Glucose to 5-Hydroxymethylfurfural in Aqueous Deep Eutectic Solvent. ChemSusChem, 2025, 18(2): e202401105. doi:10.1002/cssc.202401105
    2. Huang, K., Huhe, T., Liu, H. et al. Synthesis of hierarchically porous tantalum phosphate catalysts by a sol-gel method for transformation of glucose to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2025. doi:10.1039/d4cy01112k
    3. Li, S., Kan, Z., Bai, J. et al. Rational Design of Transition-Metal-Based Catalysts for the Electrochemical 5-Hydroxymethylfurfural Reduction Reaction. ChemSusChem, 2024, 17(24): e202400869. doi:10.1002/cssc.202400869
    4. Hu, Y., Li, H., Wu, D. et al. Boosting catalytic performance of Amberlyst‐15 by modulating surface properties for synthesis of 5-hydroxymethylfurfural from high-concentration fructose. Catalysis Today, 2024, 442: 114939. doi:10.1016/j.cattod.2024.114939
    5. Zhang, Q., Cao, Y., Xu, Z. et al. Manganese-Biochar Catalyst for Sustainable Glycolic Acid Production from Biomass-Derived Glucose and Oligosaccharides. ACS Sustainable Chemistry and Engineering, 2024, 12(44): 16423-16433. doi:10.1021/acssuschemeng.4c06938
    6. Ge, C., Sun, Q., Zhang, R. et al. Intramolecular interaction induced C-C cleavages in fructose conversion in polar aprotic solvents—origin of the formation of excess formic acid and oligomers. Physical Chemistry Chemical Physics, 2024, 26(41): 26537-26549. doi:10.1039/d4cp03317e
    7. Tang, G., Huang, X., Qin, H. et al. Hydrolysis of levoglucosan to 5-hydroxymethylfurfural in a biphasic system. Industrial Crops and Products, 2024, 216: 118714. doi:10.1016/j.indcrop.2024.118714
    8. Wassenberg, A., Esser, T., Poller, M.J. et al. Humin-free synthesis of levulinic acid from fructose using heteropolyacid catalysts. Biofuels, Bioproducts and Biorefining, 2024, 18(5): 1585-1597. doi:10.1002/bbb.2654
    9. Liang, J., Jiang, J., Cai, T. et al. Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural. Green Energy and Environment, 2024, 9(9): 1384-1406. doi:10.1016/j.gee.2023.11.005
    10. Li, H., Hu, Y., Hu, P. et al. Sequential extraction and separation of soluble humins from fructose conversion for structural and evolutional understanding. Green Chemistry, 2024, 26(9): 5499-5511. doi:10.1039/d4gc00076e
    11. Reis, G.M., Nunes, R.S., Xavier, G.T.M. et al. From citrus waste to value: optimizing sulfonated carbons for limonene upcycling into value-added products. RSC Sustainability, 2024. doi:10.1039/d4su00348a
    12. Li, L., Hu, Y., Li, H. et al. Probing the formation of soluble humins in catalytic dehydration of fructose to 5-hydroxymethylfurfural over HZSM-5 catalyst. Fuel, 2023, 344: 128133. doi:10.1016/j.fuel.2023.128133
    13. Chen, P., Yamaguchi, A., Hiyoshi, N. et al. Efficient continuous dehydration of fructose to 5-hydroxymethylfurfural in ternary solvent system. Fuel, 2023, 334: 126632. doi:10.1016/j.fuel.2022.126632

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.6 %FULLTEXT: 27.6 %META: 67.3 %META: 67.3 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %China: 43.9 %China: 43.9 %India: 1.4 %India: 1.4 %Puerto Rico: 1.4 %Puerto Rico: 1.4 %Seychelles: 0.5 %Seychelles: 0.5 %United States: 48.1 %United States: 48.1 %其他ChinaIndiaPuerto RicoSeychellesUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (141) PDF downloads(11) Cited by(14)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return