Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Xing Fu, Yexin Hu, Ping Hu, Hui Li, Shuguang Xu, Liangfang Zhu, Changwei Hu. Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water. Green Energy&Environment, 2024, 9(6): 1016-1026. doi: 10.1016/j.gee.2022.09.012
Citation: Xing Fu, Yexin Hu, Ping Hu, Hui Li, Shuguang Xu, Liangfang Zhu, Changwei Hu. Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water. Green Energy&Environment, 2024, 9(6): 1016-1026. doi: 10.1016/j.gee.2022.09.012

Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water

doi: 10.1016/j.gee.2022.09.012
  • The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural (HMF) in biorefinery. Here, a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water is delineated by combined experimental, spectroscopic, and theoretical studies. Three bimolecular reaction pathways to build up soluble humins are demonstrated. That is, the intermolecular etherification of β-furanose at room temperature initiates the C12 path, whereas the C-C cleavage of α-furanose at 130-150 ℃ leads to C11 path, and that of open-chain fructose at 180 ℃ to C11' path. The successive intramolecular dehydrations and condensations of the as-formed bimolecular intermediates lead to three types of soluble humins. We show that the C12 path could be restrained by using HCl or AlCl3 catalyst, and both the C12 and C11' paths could be effectively inhibited by adding THF as a co-solvent or accelerating heating rate via microwave heating.

     

  • loading
  • [1]
    C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poliakoff, Science 337 (2012) 695-699] has/have not been found in the reference list. Please add the corresponding reference(s) to the reference list.>.
    [2]
    T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 330 (2010) 1222-1227.
    [3]
    Y. Queneau, B. Han, The Innovation (2021) 100184.
    [4]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P. T. T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.1007.1003.
    [5]
    J. J. Bozell, G. R. Petersen, Green Chem. 12 (2010) 539-554.
    [6]
    K. I. Galkin, V. P. Ananikov, ChemSusChem 12 (2019) 2976-2982.
    [7]
    H. Liu, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, J. Zhang, L. Lin, Green Energy Environ. 7 (2022) 900-932.
    [8]
    T. M. C. Hoang, E. Van Eck, W. Bula, J. G. Gardeniers, L. Lefferts, K. Seshan, Green Chem. 17 (2015) 959-972.
    [9]
    L. Zhu, X. Fu, Y. Hu, C. Hu, ChemSusChem 13 (2020) 4812-4832.
    [10]
    D. Hu, M. Zhang, H. Xu, Y. Wang, K. Yan, Renewable Sustainable Energy Rev. 147 (2021) 111253.
    [11]
    T. D. Swift, C. Bagia, V. Choudhary, G. Peklaris, V. Nikolakis, D. G. Vlachos, ACS Catal. 4 (2014) 259-267.
    [12]
    T. D. Swift, H. Nguyen, A. Anderko, V. Nikolakis, D. G. Vlachos, Green Chem. 17 (2015) 4725-4735.
    [13]
    T. D. Swift, H. Nguyen, Z. Erdman, J. S. Kruger, V. Nikolakis, D. G. Vlachos, J. Catal. 333 (2016) 149-161.
    [14]
    J. Tang, L. Zhu, X. Fu, J. Dai, X. Guo, C. Hu, ACS Catal. 7 (2017) 256-266.
    [15]
    Z. Cheng, K. A. Goulas, N. Q. Rodriguez, B. Saha, D. G. Vlachos, Green Chem. 22 (2020) 2301-2309.
    [16]
    M.-M. Titirici, R. J. White, C. Falco, M. Sevilla, Energy Environ. Sci. 5 (2012) 6796-6822.
    [17]
    N. Shi, Q. Liu, Q. Zhang, T. Wang, L. Ma, Green Chem. 15 (2013) 1967-1974.
    [18]
    Q. Xu, X. Hu, Y. Shao, K. Sun, P. Jia, L. Zhang, Q. Liu, Y. Wang, S. Hu, J. Xiang, Carbohydr. Polym. 216 (2019) 167-179.
    [19]
    A. Al Ghatta, X. Zhou, G. Casarano, J. D. Wilton-Ely, J. P. Hallett, ACS Sustainable Chem. Eng. 9 (2021) 2212-2223.
    [20]
    B. Saha, M. M. Abu-Omar, Green Chem. 16 (2014) 24-38.
    [21]
    Y. Yang, C. W. Hu, M. M. Abu-Omar, Green Chem. 14 (2012) 509-513.
    [22]
    Y. Yang, C. Hu, M. M. Abu-Omar, ChemSusChem 5 (2012) 405-410.
    [23]
    L. Wang, H. Wang, F. Liu, A. Zheng, J. Zhang, Q. Sun, J. P. Lewis, L. Zhu, X. Meng, F. S. Xiao, ChemSusChem 7 (2014) 402-406.
    [24]
    L. Zhu, J. Dai, M. Liu, D. Tang, S. Liu, C. Hu, ChemSusChem 9 (2016) 2174-2181.
    [25]
    J. Dai, L. Zhu, D. Tang, X. Fu, J. Tang, X. Guo, C. Hu, Green Chem. 19 (2017) 1932-1939.
    [26]
    S. Karwa, V. M. Gajiwala, J. Heltzel, S. K. Patil, C. R. Lund, Catal. Today 263 (2016) 16-21.
    [27]
    P. Ramesh, A. Kritikos, G. Tsilomelekis, React. Chem. Eng. 4 (2019) 273-277.
    [28]
    X. Fu, Y. Hu, Y. Zhang, Y. Zhang, D. Tang, L. Zhu, C. Hu, ChemSusChem 13 (2020) 501-512.
    [29]
    K. Iris, D.C. Tsang, Bioresour. Technol. 238 (2017) 716-732.
    [30]
    T. Wang, M.W. Nolte, B. H. Shanks, Green Chem. 16 (2014) 548-572.
    [31]
    S. Luan, W. Li, Z. Guo, W. Li, X. Hou, Y. Song, R. Wang, Q. Wang, Green Energy Environ. 7 (2021) 1033-1044.
    [32]
    L. Atanda, A. Shrotri, S. Mukundan, Q. Ma, M. Konarova, J. Beltramini, ChemSusChem 8 (2015) 2907-2916.
    [33]
    L. Li, F. Shen, R. L. Smith, X. Qi, Green Chem. 19 (2017) 76-81.
    [34]
    G. Klaerner, R. Miller, Macromol. 31 (1998) 2007-2009.
    [35]
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    [36]
    R.G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922-1924.
    [37]
    A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113 (2009) 4538-4543.
    [38]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
    [39]
    C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 90 (1989) 2154-2161.
    [40]
    H. S. Kim, S. K. Kim, G. T. Jeong, J. Ind. Eng. Chem. 63 (2018) 48-56.
    [41]
    W. Deng, Q. Zhang, Y. Wang, Catal. Today 234 (2014) 31-41.
    [42]
    M. Asakawa, A. Shrotri, H. Kobayashi, A. Fukuoka, Green Chem. 21 (2019) 6146-6153.
    [43]
    N. Shi, Q. Liu, H. Cen, R. Ju, X. He, L. Ma, Biomass Convers. Biorefin. 10 (2020) 277-287.
    [44]
    H. Shen, H. Shan, L. Liu, ChemSusChem 13 (2020) 513-519.
    [45]
    G. R. Akien, L. Qi, I. T. Horvath, Chem. Commun. 48 (2012) 5850-5852.
    [46]
    G. Tsilomelekis, M. J. Orella, Z. Lin, Z. Cheng, W. Zheng, V. Nikolakis, D. G. Vlachos, Green Chem. 18 (2016) 1983-1993.
    [47]
    X. Fu, J. Dai, X. Guo, J. Tang, L. Zhu, C. Hu, Green Chem. 19 (2017) 3334-3343.
    [48]
    S. D. P. S. Pereira, J. O. S. Varejao, De Fatima, S. A. Fernandes, Ind. Crops Prod. 138 (2019) 111492.
    [49]
    Y. Wang, X. Yang, H. Zheng, X. Li, Y. Zhu, Y. Li, Mol. Catal. 463 (2019) 130-139.
    [50]
    Y. Wang, G. Ding, X. Yang, H. Zheng, Y. Zhu, Y. Li, Appl. Catal., B 235 (2018) 150-157.
    [51]
    J. Cui, J. Tan, T. Deng, X. Cui, Y. Zhu, Y. Li, Green Chem. 18 (2016) 1619-1624.
    [52]
    R. Li, Q. Lin, J. Ren, X. Yang, Y. Wang, L. Kong, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.1006.1003.
    [53]
    W. Hongsiri, B. Danon, W. De Jong, Int. J. Energy Environ. Eng. 6 (2015) 21-30.
    [54]
    J.-J. Max, C. Chapados, J. Phys. Chem. A 111 (2007) 2679-2689.
    [55]
    T. Barclay, M. Ginic-Markovic, M. R. Johnston, P. Cooper, N. Petrovsky, Carbohydr. Res. 347 (2012) 136-141.
    [56]
    H. Kimura, M. Nakahara, N. Matubayasi, J. Phys. Chem. A 115 (2011) 14013-14021.
    [57]
    H. Kimura, M. Nakahara, N. Matubayasi, J. Phys. Chem. A 117 (2013) 2102-2113.
    [58]
    D. C. Mccain, J. L. Markley, J. Am. Chem. Soc. 108 (1986) 4259-4264.
    [59]
    H. Wang, J. Chem. Educ. 82 (2005) 1340.
    [60]
    W. Deng, P. Wang, B. Wang, Y. Wang, L. Yan, Y. Li, Q. Zhang, Z. Cao, Y. Wang, Green Chem. 20 (2018) 735-744.
    [61]
    P. Gao, G. Li, F. Yang, X. Lv, H. Fan, L. Meng, X. Yu, Ind. Crops Prod. 48 (2013) 61-67.
    [62]
    E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, K. Malek, Spectrochim. Acta, Part A 185 (2017) 317-335.
    [63]
    G. Yang, E.A. Pidko, E.J. Hensen, J. Catal. 295 (2012) 122-132.
    [64]
    C. Virues, J. Hernandez, I. Higuera-Ciapara, E. Martinez-Benavidez, J. L. Olivares-Romero, R. E. Navarro, M. Inoue, Carbohydr. Res. 490 (2020) 107952.
    [65]
    V. Ordomsky, J. Van Der Schaaf, J. Schouten, T. Nijhuis, J. Catal. 287 (2012) 68-75.
    [66]
    V. Vasudevan, S. H. Mushrif, RSC Adv. 5 (2015) 20756-20763.
    [67]
    E. Nikolla, Y. Roman-Leshkov, M. Moliner, M.E. Davis, ACS Catal. 1 (2011) 408-410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return