Citation: | Xing Fu, Yexin Hu, Ping Hu, Hui Li, Shuguang Xu, Liangfang Zhu, Changwei Hu. Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water. Green Energy&Environment, 2024, 9(6): 1016-1026. doi: 10.1016/j.gee.2022.09.012 |
[1] |
C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poliakoff, Science 337 (2012) 695-699] has/have not been found in the reference list. Please add the corresponding reference(s) to the reference list.>.
|
[2] |
T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 330 (2010) 1222-1227.
|
[3] |
Y. Queneau, B. Han, The Innovation (2021) 100184.
|
[4] |
W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P. T. T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.1007.1003.
|
[5] |
J. J. Bozell, G. R. Petersen, Green Chem. 12 (2010) 539-554.
|
[6] |
K. I. Galkin, V. P. Ananikov, ChemSusChem 12 (2019) 2976-2982.
|
[7] |
H. Liu, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, J. Zhang, L. Lin, Green Energy Environ. 7 (2022) 900-932.
|
[8] |
T. M. C. Hoang, E. Van Eck, W. Bula, J. G. Gardeniers, L. Lefferts, K. Seshan, Green Chem. 17 (2015) 959-972.
|
[9] |
L. Zhu, X. Fu, Y. Hu, C. Hu, ChemSusChem 13 (2020) 4812-4832.
|
[10] |
D. Hu, M. Zhang, H. Xu, Y. Wang, K. Yan, Renewable Sustainable Energy Rev. 147 (2021) 111253.
|
[11] |
T. D. Swift, C. Bagia, V. Choudhary, G. Peklaris, V. Nikolakis, D. G. Vlachos, ACS Catal. 4 (2014) 259-267.
|
[12] |
T. D. Swift, H. Nguyen, A. Anderko, V. Nikolakis, D. G. Vlachos, Green Chem. 17 (2015) 4725-4735.
|
[13] |
T. D. Swift, H. Nguyen, Z. Erdman, J. S. Kruger, V. Nikolakis, D. G. Vlachos, J. Catal. 333 (2016) 149-161.
|
[14] |
J. Tang, L. Zhu, X. Fu, J. Dai, X. Guo, C. Hu, ACS Catal. 7 (2017) 256-266.
|
[15] |
Z. Cheng, K. A. Goulas, N. Q. Rodriguez, B. Saha, D. G. Vlachos, Green Chem. 22 (2020) 2301-2309.
|
[16] |
M.-M. Titirici, R. J. White, C. Falco, M. Sevilla, Energy Environ. Sci. 5 (2012) 6796-6822.
|
[17] |
N. Shi, Q. Liu, Q. Zhang, T. Wang, L. Ma, Green Chem. 15 (2013) 1967-1974.
|
[18] |
Q. Xu, X. Hu, Y. Shao, K. Sun, P. Jia, L. Zhang, Q. Liu, Y. Wang, S. Hu, J. Xiang, Carbohydr. Polym. 216 (2019) 167-179.
|
[19] |
A. Al Ghatta, X. Zhou, G. Casarano, J. D. Wilton-Ely, J. P. Hallett, ACS Sustainable Chem. Eng. 9 (2021) 2212-2223.
|
[20] |
B. Saha, M. M. Abu-Omar, Green Chem. 16 (2014) 24-38.
|
[21] |
Y. Yang, C. W. Hu, M. M. Abu-Omar, Green Chem. 14 (2012) 509-513.
|
[22] |
Y. Yang, C. Hu, M. M. Abu-Omar, ChemSusChem 5 (2012) 405-410.
|
[23] |
L. Wang, H. Wang, F. Liu, A. Zheng, J. Zhang, Q. Sun, J. P. Lewis, L. Zhu, X. Meng, F. S. Xiao, ChemSusChem 7 (2014) 402-406.
|
[24] |
L. Zhu, J. Dai, M. Liu, D. Tang, S. Liu, C. Hu, ChemSusChem 9 (2016) 2174-2181.
|
[25] |
J. Dai, L. Zhu, D. Tang, X. Fu, J. Tang, X. Guo, C. Hu, Green Chem. 19 (2017) 1932-1939.
|
[26] |
S. Karwa, V. M. Gajiwala, J. Heltzel, S. K. Patil, C. R. Lund, Catal. Today 263 (2016) 16-21.
|
[27] |
P. Ramesh, A. Kritikos, G. Tsilomelekis, React. Chem. Eng. 4 (2019) 273-277.
|
[28] |
X. Fu, Y. Hu, Y. Zhang, Y. Zhang, D. Tang, L. Zhu, C. Hu, ChemSusChem 13 (2020) 501-512.
|
[29] |
K. Iris, D.C. Tsang, Bioresour. Technol. 238 (2017) 716-732.
|
[30] |
T. Wang, M.W. Nolte, B. H. Shanks, Green Chem. 16 (2014) 548-572.
|
[31] |
S. Luan, W. Li, Z. Guo, W. Li, X. Hou, Y. Song, R. Wang, Q. Wang, Green Energy Environ. 7 (2021) 1033-1044.
|
[32] |
L. Atanda, A. Shrotri, S. Mukundan, Q. Ma, M. Konarova, J. Beltramini, ChemSusChem 8 (2015) 2907-2916.
|
[33] |
L. Li, F. Shen, R. L. Smith, X. Qi, Green Chem. 19 (2017) 76-81.
|
[34] |
G. Klaerner, R. Miller, Macromol. 31 (1998) 2007-2009.
|
[35] |
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
|
[36] |
R.G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922-1924.
|
[37] |
A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113 (2009) 4538-4543.
|
[38] |
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
|
[39] |
C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 90 (1989) 2154-2161.
|
[40] |
H. S. Kim, S. K. Kim, G. T. Jeong, J. Ind. Eng. Chem. 63 (2018) 48-56.
|
[41] |
W. Deng, Q. Zhang, Y. Wang, Catal. Today 234 (2014) 31-41.
|
[42] |
M. Asakawa, A. Shrotri, H. Kobayashi, A. Fukuoka, Green Chem. 21 (2019) 6146-6153.
|
[43] |
N. Shi, Q. Liu, H. Cen, R. Ju, X. He, L. Ma, Biomass Convers. Biorefin. 10 (2020) 277-287.
|
[44] |
H. Shen, H. Shan, L. Liu, ChemSusChem 13 (2020) 513-519.
|
[45] |
G. R. Akien, L. Qi, I. T. Horvath, Chem. Commun. 48 (2012) 5850-5852.
|
[46] |
G. Tsilomelekis, M. J. Orella, Z. Lin, Z. Cheng, W. Zheng, V. Nikolakis, D. G. Vlachos, Green Chem. 18 (2016) 1983-1993.
|
[47] |
X. Fu, J. Dai, X. Guo, J. Tang, L. Zhu, C. Hu, Green Chem. 19 (2017) 3334-3343.
|
[48] |
S. D. P. S. Pereira, J. O. S. Varejao, De Fatima, S. A. Fernandes, Ind. Crops Prod. 138 (2019) 111492.
|
[49] |
Y. Wang, X. Yang, H. Zheng, X. Li, Y. Zhu, Y. Li, Mol. Catal. 463 (2019) 130-139.
|
[50] |
Y. Wang, G. Ding, X. Yang, H. Zheng, Y. Zhu, Y. Li, Appl. Catal., B 235 (2018) 150-157.
|
[51] |
J. Cui, J. Tan, T. Deng, X. Cui, Y. Zhu, Y. Li, Green Chem. 18 (2016) 1619-1624.
|
[52] |
R. Li, Q. Lin, J. Ren, X. Yang, Y. Wang, L. Kong, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.1006.1003.
|
[53] |
W. Hongsiri, B. Danon, W. De Jong, Int. J. Energy Environ. Eng. 6 (2015) 21-30.
|
[54] |
J.-J. Max, C. Chapados, J. Phys. Chem. A 111 (2007) 2679-2689.
|
[55] |
T. Barclay, M. Ginic-Markovic, M. R. Johnston, P. Cooper, N. Petrovsky, Carbohydr. Res. 347 (2012) 136-141.
|
[56] |
H. Kimura, M. Nakahara, N. Matubayasi, J. Phys. Chem. A 115 (2011) 14013-14021.
|
[57] |
H. Kimura, M. Nakahara, N. Matubayasi, J. Phys. Chem. A 117 (2013) 2102-2113.
|
[58] |
D. C. Mccain, J. L. Markley, J. Am. Chem. Soc. 108 (1986) 4259-4264.
|
[59] |
H. Wang, J. Chem. Educ. 82 (2005) 1340.
|
[60] |
W. Deng, P. Wang, B. Wang, Y. Wang, L. Yan, Y. Li, Q. Zhang, Z. Cao, Y. Wang, Green Chem. 20 (2018) 735-744.
|
[61] |
P. Gao, G. Li, F. Yang, X. Lv, H. Fan, L. Meng, X. Yu, Ind. Crops Prod. 48 (2013) 61-67.
|
[62] |
E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, K. Malek, Spectrochim. Acta, Part A 185 (2017) 317-335.
|
[63] |
G. Yang, E.A. Pidko, E.J. Hensen, J. Catal. 295 (2012) 122-132.
|
[64] |
C. Virues, J. Hernandez, I. Higuera-Ciapara, E. Martinez-Benavidez, J. L. Olivares-Romero, R. E. Navarro, M. Inoue, Carbohydr. Res. 490 (2020) 107952.
|
[65] |
V. Ordomsky, J. Van Der Schaaf, J. Schouten, T. Nijhuis, J. Catal. 287 (2012) 68-75.
|
[66] |
V. Vasudevan, S. H. Mushrif, RSC Adv. 5 (2015) 20756-20763.
|
[67] |
E. Nikolla, Y. Roman-Leshkov, M. Moliner, M.E. Davis, ACS Catal. 1 (2011) 408-410.
|
1. | Xusheng, G., Chuan, Q., Yuxi, S. et al. Ultra-Dilute SnCl4-Catalyzed Conversion of Concentrated Glucose to 5-Hydroxymethylfurfural in Aqueous Deep Eutectic Solvent. ChemSusChem, 2025, 18(2): e202401105. doi:10.1002/cssc.202401105 | |
2. | Huang, K., Huhe, T., Liu, H. et al. Synthesis of hierarchically porous tantalum phosphate catalysts by a sol-gel method for transformation of glucose to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2025. doi:10.1039/d4cy01112k | |
3. | Li, S., Kan, Z., Bai, J. et al. Rational Design of Transition-Metal-Based Catalysts for the Electrochemical 5-Hydroxymethylfurfural Reduction Reaction. ChemSusChem, 2024, 17(24): e202400869. doi:10.1002/cssc.202400869 | |
4. | Hu, Y., Li, H., Wu, D. et al. Boosting catalytic performance of Amberlyst‐15 by modulating surface properties for synthesis of 5-hydroxymethylfurfural from high-concentration fructose. Catalysis Today, 2024, 442: 114939. doi:10.1016/j.cattod.2024.114939 | |
5. | Zhang, Q., Cao, Y., Xu, Z. et al. Manganese-Biochar Catalyst for Sustainable Glycolic Acid Production from Biomass-Derived Glucose and Oligosaccharides. ACS Sustainable Chemistry and Engineering, 2024, 12(44): 16423-16433. doi:10.1021/acssuschemeng.4c06938 | |
6. | Ge, C., Sun, Q., Zhang, R. et al. Intramolecular interaction induced C-C cleavages in fructose conversion in polar aprotic solvents—origin of the formation of excess formic acid and oligomers. Physical Chemistry Chemical Physics, 2024, 26(41): 26537-26549. doi:10.1039/d4cp03317e | |
7. | Tang, G., Huang, X., Qin, H. et al. Hydrolysis of levoglucosan to 5-hydroxymethylfurfural in a biphasic system. Industrial Crops and Products, 2024, 216: 118714. doi:10.1016/j.indcrop.2024.118714 | |
8. | Wassenberg, A., Esser, T., Poller, M.J. et al. Humin-free synthesis of levulinic acid from fructose using heteropolyacid catalysts. Biofuels, Bioproducts and Biorefining, 2024, 18(5): 1585-1597. doi:10.1002/bbb.2654 | |
9. | Liang, J., Jiang, J., Cai, T. et al. Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural. Green Energy and Environment, 2024, 9(9): 1384-1406. doi:10.1016/j.gee.2023.11.005 | |
10. | Li, H., Hu, Y., Hu, P. et al. Sequential extraction and separation of soluble humins from fructose conversion for structural and evolutional understanding. Green Chemistry, 2024, 26(9): 5499-5511. doi:10.1039/d4gc00076e | |
11. | Reis, G.M., Nunes, R.S., Xavier, G.T.M. et al. From citrus waste to value: optimizing sulfonated carbons for limonene upcycling into value-added products. RSC Sustainability, 2024. doi:10.1039/d4su00348a | |
12. | Li, L., Hu, Y., Li, H. et al. Probing the formation of soluble humins in catalytic dehydration of fructose to 5-hydroxymethylfurfural over HZSM-5 catalyst. Fuel, 2023, 344: 128133. doi:10.1016/j.fuel.2023.128133 | |
13. | Chen, P., Yamaguchi, A., Hiyoshi, N. et al. Efficient continuous dehydration of fructose to 5-hydroxymethylfurfural in ternary solvent system. Fuel, 2023, 334: 126632. doi:10.1016/j.fuel.2022.126632 |