Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Zhengshan Yang, Bowen Deng, Kaifa Du, Huayi Yin, Dihua Wang. A general descriptor for guiding the electrolysis of CO2 in molten carbonate. Green Energy&Environment, 2024, 9(4): 748-757. doi: 10.1016/j.gee.2022.09.011
Citation: Zhengshan Yang, Bowen Deng, Kaifa Du, Huayi Yin, Dihua Wang. A general descriptor for guiding the electrolysis of CO2 in molten carbonate. Green Energy&Environment, 2024, 9(4): 748-757. doi: 10.1016/j.gee.2022.09.011

A general descriptor for guiding the electrolysis of CO2 in molten carbonate

doi: 10.1016/j.gee.2022.09.011
  • Molten carbonate is an excellent electrolyte for the electrochemical reduction of CO2 to carbonaceous materials. However, the electrolyte–electrode-reaction relationship has not been well understood. Herein, we propose a general descriptor, the CO2 activity, to reveal the electrolyte–electrode-reaction relationship by thermodynamic calculations and experimental studies. Experimental studies agree well with theoretical predictions that both cations (Li+, Ca2+, Sr2+ and Ba2+) and anions (BO2-, Ti5O148-, SiO32-) can modulate the CO2 activity to control both cathode and anode reactions in a typical molten carbonate electrolyzer in terms of tuning reaction products and overpotentials. In this regard, the reduction of CO32- can be interpreted as the direct reduction of CO2 generated from the dissociated CO32-, and the CO2 activity can be used as a general descriptor to predict the electrode reaction in molten carbonate. Overall, the CO2 activity descriptor unlocks the electrolyte–electrode-reaction relationship, thereby providing fundamental insights into guiding molten carbonate CO2 electrolysis.

     

  • loading
  • [1]
    R. Shi, J. Guo, X. Zhang, G.I.N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun. 11 (2020) 1-10.
    [2]
    J.E. Huang, F. Li, A. Ozden, A.S. Rasouli, F.P.G. de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R.K. Miao, C.T. Dinh, D. Sinton, E.H. Sargent, Science 372 (2021) 1074-1078.
    [3]
    D.H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F. Li, T. Agapie, J.C. Peters, O. Shekhah, M. Eddaoudi, E.H. Sargent, Nat. Mater. 19 (2020) 266-276.
    [4]
    F.P. Garcia de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum, A.R. Kirmani, D.H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y.C. Li, F. Li, J. Edwards, L.J. Richter, S.J. Thorpe, D. Sinton, E.H. Sargent, Science 367 (2020) 661-666.
    [5]
    X. Tan, C. Yu, Y. Ren, S. Cui, W. Li, J. Qiu, Energy Environ. Sci. 14 (2021) 765-780.
    [6]
    E.W. Lees, M. Goldman, A.G. Fink, D.J. Dvorak, D.A. Salvatore, Z. Zhang, N.W.X. Loo, C.P. Berlinguette, ACS Energy Lett. 5 (2020) 2165-2173.
    [7]
    Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Nature 575 (2019) 639-642.
    [8]
    R. Francke, B. Schille, M. Roemelt, Chem. Rev. 118 (2018) 4631-4701.
    [9]
    M. Chu, C. Chen, Y. Wu, X. Yan, S. Jia, R. Feng, H. Wu, M. He, B. Han, Green Energy Environ. 7 (2022) 792-798.
    [10]
    Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong, M. Huai, L. Xiao, G. Wang, J. Lu, L. Zhuang, Energy Environ. Sci. 12 (2019) 2455-2462.
    [11]
    J.C. Robertson, M.L. Coote, A.C. Bissember, Nat. Rev. Chem. 3 (2019) 290-304.
    [12]
    S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld, S. Horch, B. Seger, I.E.L. Stephens, K. Chan, C. Hahn, J.K. Noerskov, T.F. Jaramillo, I. Chorkendorff, Chem. Rev. 119 (2019) 7610-7672.
    [13]
    K.M. Diederichsen, Y. Liu, N. Ozbek, H. Seo, T.A. Hatton, Joule. 6 (2022) 221-239.
    [14]
    Y. Yang, C.R. Peltier, R. Zeng, R. Schimmenti, Q. Li, X. Huang, Z. Yan, G. Potsi, R. Selhorst, X. Lu, W. Xu, M. Tader, A. V. Soudackov, H. Zhang, M. Krumov, E. Murray, P. Xu, J. Hitt, L. Xu, H.Y. Ko, B.G. Ernst, C. Bundschu, A. Luo, D. Markovich, M. Hu, C. He, H. Wang, J. Fang, R.A. Distasio, L.F. Kourkoutis, A. Singer, K.J.T. Noonan, L. Xiao, L. Zhuang, B.S. Pivovar, P. Zelenay, E. Herrero, J.M. Feliu, J. Suntivich, E.P. Giannelis, S. Hammes-Schiffer, T. Arias, M. Mavrikakis, T.E. Mallouk, J.D. Brock, D.A. Muller, F.J. Disalvo, G.W. Coates, H.D. Abruna, Chem. Rev. 122 (2022) 6117-6321.
    [15]
    Y. Chen, T. Mu, Green Chem. 21 (2019) 2544-2574.
    [16]
    S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, Chem. Rev. 114 (2014) 10697-10734.
    [17]
    Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev. 46 (2017) 1427-1463.
    [18]
    H. Yin, X. Mao, D. Tang, W. Xiao, L. Xing, H. Zhu, D. Wang, D.R. Sadoway, Energy Environ. Sci. 6 (2013) 1538-1545.
    [19]
    L. Hu, Y. Song, J. Ge, J. Zhu, S. Jiao, J. Mater. Chem. A. 3 (2015) 21211-21218.
    [20]
    S. Licht, A. Douglas, J. Ren, R. Carter, M. Lefler, C.L. Pint, ACS Cent. Sci. 2 (2016) 162-168.
    [21]
    J. Ren, A. Yu, P. Peng, M. Lefler, F.F. Li, S. Licht, Acc. Chem. Res. 52 (2019) 3177-3187.
    [22]
    L. Hu, B. Deng, K. Du, R. Jiang, Y. Dou, D. Wang, iScience 23 (2020) 101607.
    [23]
    J.A. Rabinowitz, M.W. Kanan, Nat. Commun. 11 (2020) 1-3.
    [24]
    M. Wang, Q. Zou, X. Dong, N. Xu, R. Shao, J. Ding, Y. Zhang, J. Qiao, Green Energy Environ. 8 (2023) 893-903.
    [25]
    Y. Song, X. Zhang, K. Xie, G. Wang, X. Bao, Adv. Mater. 31 (2019) 1902033.
    [26]
    X. Cheng, H. Yin, D. Wang, Corros. Sci. 141 (2018) 168-174.
    [27]
    K. Du, R. Yu, M. Gao, Z. Chen, X. Mao, H. Zhu, D. Wang, Corros. Sci. (2019) 12-18.
    [28]
    Y. Chen, M. Wang, J. Zhang, J. Tu, J. Ge, S. Jiao, J. Mater. Chem. A. 9 (2021) 14119-14146.
    [29]
    R. Jiang, M. Gao, X. Mao, D. Wang, Curr. Opin. Electrochem. 17 (2019) 38-46.
    [30]
    A. Melendez-Ceballos, E. Gurbuz, A. Brouzgou, V. Albin, A. Ringuede, V. Lair, M. Cassir, J. Electrochem. Soc. 167 (2020) 064504.
    [31]
    X. Chen, Z. Zhao, J. Qu, B. Zhang, X. Ding, Y. Geng, H. Xie, D. Wang, H. Yin, ACS Sustain. Chem. Eng. 9 (2021) 4167-4174.
    [32]
    X. Wang, G. Licht, X. Liu, S. Licht, Adv. Sustain. Syst. 6 (2022) 2100481.
    [33]
    M.D. Ingram, B. Baron, G.J. Janz, Electrochim. Acta. 11 (1966) 1629-1639.
    [34]
    H. V. Ijije, R.C. Lawrence, G.Z. Chen, RSC Adv. 4 (2014) 35808-35817.
    [35]
    H. Wu, Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, J. Ren, M. Lefler, B. Wang, S. Licht, Carbon N. Y. 106 (2016) 208-217.
    [36]
    X. Chen, H. Zhao, H. Xie, J. Qu, X. Ding, Y. Geng, D. Wang, H. Yin, Electrochim. Acta. 324 (2019) 134852.
    [37]
    S. Zhang, Y. Chen, R.X.-F. Ren, Y. Zhang, J. Zhang, X. Zhang, J. Chem. Eng. Data. 50 (2005) 230-233.
    [38]
    M. Cassir, G. Moutiers, J. Devynck, J. Electrochem. Soc. 140 (1993) 3114.
    [39]
    D. Chery, V. Lair, M. Cassir, Electrochim. Acta. 160 (2015) 74-81.
    [40]
    Z. Shi, W. Deng, X. Song, X. Hu, B. Gao, Z. Wang, J. Chem. Eng. Data. 61 (2016) 3020-3026.
    [41]
    Y. Zhang, Inorg. Chem. 21 (1982) 3886-3889.
    [42]
    P. Sanchez-Camacho, I.C. Romero-Ibarra, Y. Duan, H. Pfeiffer, J. Phys. Chem. C. 118 (2014) 19822-19832.
    [43]
    P. Wu, G. Eriksson, A.D. Pelton, J. Am. Ceram. Soc. 76 (1993) 2059-2064.
    [44]
    H. Xie, H. Zhao, J. Qu, Q. Song, Z. Ning, H. Yin, J. Solid State Electrochem. 23 (2019) 903-909.
    [45]
    J. Liu, Z. Wang, Z. Wang, J. Song, G. Li, Q. Xu, J. You, H. Cheng, X. Lu, Phys. Chem. Chem. Phys. 21 (2019) 13135-13143.
    [46]
    Z. Wang, W. Liu, Z. Tang, Q. Xu, Phys. Chem. Chem. Phys. 22 (2020) 27263-27271.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return