Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Jiahui Mu, Cuihuan Li, Jiankang Zhang, Xianliang Song, Sheng Chen, Feng Xu. Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo2O4 for asymmetric supercapacitors with high energy density. Green Energy&Environment, 2023, 8(5): 1479-1487. doi: 10.1016/j.gee.2022.09.010
Citation: Jiahui Mu, Cuihuan Li, Jiankang Zhang, Xianliang Song, Sheng Chen, Feng Xu. Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo2O4 for asymmetric supercapacitors with high energy density. Green Energy&Environment, 2023, 8(5): 1479-1487. doi: 10.1016/j.gee.2022.09.010

Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo2O4 for asymmetric supercapacitors with high energy density

doi: 10.1016/j.gee.2022.09.010
  • Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications, such as the electrodes of supercapacitors; however, the improvement of their energy density remains a challenge. Here, we design a green and universal approach to prepare the composite electrode material, which is composed of lignin-phenol-formaldehyde resins derived hierarchical porous carbon (LR-HPC) as conductive skeletons and the self-assembly manganese cobaltite (MnCo2O4) nanocrystals as active sites. The synthesized C@MnCo2O4 composite has an abundant porous structure and superior electronic conductivity, allowing for more charge/electron mass transfer channels and active sites for the redox reactions. The composite shows excellent electrochemical performance, such as the maximum specific capacitance of ~726 mF cm−2 at 0.5 mV s−1, due to the significantly enhanced interactive interface between LR-HPC and MnCo2O4 crystals. The assembled all-solid-state asymmetric supercapacitor, with the LR-HPC and C@MnCo2O4 as cathode and anode, respectively, exhibits the highest volumetric energy density of 0.68 mWh cm−3 at a power density of 8.2 mW cm−3. Moreover, this device shows a high capacity retention ratio of ~87.6% at 5 mA cm−2 after 5000 cycles.

     

  • loading
  • [1]
    T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sukha, P. Sirisinudomkit, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul, M. Sawangphruk, ACS Appl. Mater. Inter. 8 (2016) 34045-34053.
    [2]
    J. Feng, Y. Wang, Y. Xu, H. Ma, G. Wang, P. Ma, Y. Tang, X. Yan, Adv. Mater. 33 (2021) e2100887.
    [3]
    Q. Liu, Z. Chen, S. Jing, H. Zhuo, Y. Hu, J. Liu, L. Zhong, X. Peng, C. Liu, J. Mater. Chem. A 6 (2018) 20338-20346.
    [4]
    B. Saravanakumar, X. Wang, W. Zhang, L. Xing, W. Li, Chem. Eng. J. 373 (2019) 547-555.
    [5]
    Z. Zhu, Z. Zhang, Q. Zhuang, F. Gao, Q. Liu, X. Zhu, M. Fu, J. Power Sources 492 (2021) 229669.
    [6]
    H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 16 (2017) 454-460.
    [7]
    S. Zhou, P. Huang, T. Xiong, F. Yang, H. Yang, Y. Huang, D. Li, J. Deng, M.-S. Balogun, Small 17 (2021), 2100778.
    [8]
    J. Li, D. Xiong, L. Wang, M.K.S. Hirbod, X. Li, J. Energy Chem. 37 (2019) 66-72.
    [9]
    S. Nagamuthu, S. Vijayakumar, S.-H. Lee, K.-S. Ryu, Appl. Surf. Sci. 390 (2016) 202-208.
    [10]
    R. Huang, J. Lin, J. Zhou, E. Fan, X. Zhang, R. Chen, F. Wu, L. Li, Small 17 (2021) e2007597.
    [11]
    Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, M.-S. Balogun, Energy Storage Mater. 25 (2020) 41-51.
    [12]
    Y. Li, Y. Xia, K. Liu, K. Ye, Q.Wang, S. Zhang, Y. Huang, H. Liu, ACS Appl. Mater. Inter. (12) 2020 25494-32550.
    [13]
    K. Ren, Z. Liu, T. Wei, Z. Fan, Nano-Micro Lett. 13 (2021) 129.
    [14]
    S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Nanoscale 10 (2018) 12871-12934.
    [15]
    L.-Q. Fan, J.-L. Huang, Y.-L. Wang, C.-L. Geng, S.-J. Sun, Y.-F. Huang, J.-H. Wu, J. Energy Storage 30 (2020) 101427.
    [16]
    H. Yang, T. Xiong, Z. Zhu, R. Xiao, X. Yao, Y. Huang, M.-S. Balogun, Carbon Energy (2022). https://doi.org/10.1002/cey2.173
    [17]
    J. Zhu, C. Yan, X. Zhang, C. Yang, M. Jiang, X. Zhang, Prog. Energ. Combust. 76 (2020) 100788.
    [18]
    N. Sun, Z. Wang, X. Ma, K. Zhang, Z. Wang, Z. Guo, Y. Chen, L. Sun, W. Lu, Y. Liu, M. Di, Ind. Crop. Prod. 174 (2021) 114178-114188.
    [19]
    D. Kun, B. Puk´anszky, Eur. Polym. J. 93 (2017) 618-641.
    [20]
    Z. Li, Y. Li, J. Li, Y. Gao, X. Gu, ACS Omega 4 (2019) 1-8.
    [21]
    W. Li, G. Wang, W. Sui, T. Xu, Z. Li, A. M. Parvez, C. Si, Carbon 196 (2022) 819-827.
    [22]
    S.K. Meher, G.R. Rao, J. Phys. Chem. C 115 (2011) 15646-15654.
    [23]
    J. Liu, L. Zhang, W. Shun, J. Dai, Y. Peng, X. Liu, J. Polym. Sci. 59 (2021) 1474-1490.
    [24]
    X.Y. Chen, Y.Y. He, H. Song, Z.J. Zhang, Carbon 72 (2014) 410-420.
    [25]
    K. Zeng, W. Li, Y. Zhou, Z. Sun, C. Lu, J. Yan, J.-H. Choi, R. Yang, Chem. Eng. J. 421 (2021) 127831.
    [26]
    G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu, D. Wang, J. Mater. Chem. A 6 (2018) 1822-1831.
    [27]
    S. Abouali, M.A. Garakani, B. Zhang, Z.L. Xu, E.K. Heidari, J.Q. Huang, J. Huang, J.K. Kim, ACS Appl. Mater. Inter. 7 (2015) 13503-13511.
    [28]
    M. Cui, H. Zhao, X. Dai, Y. Yang, X. Zhang, X. Luan, F. Nie, Z. Ren, Y. Dong, Y. Wang, J. Yang, X. Huang, ACS Sustain. Chem. Eng. 7 (2019) 13015-13022.
    [29]
    H. Che, Y. Wang, Y. Mao, J. Alloy. Compd. 680 (2016) 586-594.
    [30]
    W. Li, K. Xu, G. Song, X. Zhou, R. Zou, J. Yang, Z. Chen, J. Hu, CrystEngComm 16 (2014) 2335-2339.
    [31]
    C. Xiao, X. Zhang, T. Mendes, G.P. Knowles, A. Chaffee, D.R. Macfarlane, J. Phys. Chem. C 120 (2016) 23976-23983.
    [32]
    J. Chen, A. Pan, W. Zhang, X. Cao, R. Lu, S. Liang, G. Cao, Sci. China Mater. 64 (2020) 1150-1158.
    [33]
    S. Lee, W. Li, A. Dolocan, H. Celio, H. Park, J.H. Warner, A. Manthiram, Adv. Energy Mater. 11 (2021) 2100858.
    [34]
    J. Wei, X. Li, H. Xue, J. Shao, R. Zhu, H. Pang, Adv. Mater. Interfaces 5 (2018) 1701509.
    [35]
    Z. Liu, F. Teng, C. Yuan, Z. Ul Abideen, W. Gu, Z. Liu, Energy Technol. 7 (2019) 1900314.
    [36]
    Y. Wang, X. Wang, X. Li, X. Li, Y. Liu, Y. Bai, H. Xiao, G. Yuan, Adv. Funct. Mater. 31 (2020) 2003057.
    [37]
    H. Liang, C. Xia, A.-H. Emwas, D.H. Anjum, X. Miao, H.N. Alshareef, Nano Energy 49 (2018) 155-162.
    [38]
    P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. Wong, Z. Wang, ACS Nano 7 (2013) 2617-2627.
    [39]
    X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M.S. Balogun, Y. Tong, Adv. Mater. 26 (2014) 3148-3155.
    [40]
    Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, Adv. Energy Mater. 8 (2018) 1703043.
    [41]
    J. Noh, C.-M. Yoon, Y.K. Kim, J. Jang, Carbon 116 (2017) 470-478.
    [42]
    L. Wang, S. Li, F. Huang, X. Yu, M. Liu, H. Zhang, J. Power Sources 439 (2019) 227103.
    [43]
    L. Li, M. Zhang, X. Zhang, Z. Zhang, J. Power Sources 364 (2017) 234-241.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (141) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return