Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Hong Qin, Yangzhuo He, Piao Xu, Yuan Zhu, Han Wang, Ziwei Wang, Yin Zhao, Haijiao Xie, Quyang Tian, Changlin Wang, Ying Zeng, Yicheng Li. Carbon-doped CuFe2O4 with C-O-M channels for enhanced Fenton-like degradation of tetracycline hydrochloride: From construction to mechanism. Green Energy&Environment, 2024, 9(4): 732-747. doi: 10.1016/j.gee.2022.09.006
Citation: Hong Qin, Yangzhuo He, Piao Xu, Yuan Zhu, Han Wang, Ziwei Wang, Yin Zhao, Haijiao Xie, Quyang Tian, Changlin Wang, Ying Zeng, Yicheng Li. Carbon-doped CuFe2O4 with C-O-M channels for enhanced Fenton-like degradation of tetracycline hydrochloride: From construction to mechanism. Green Energy&Environment, 2024, 9(4): 732-747. doi: 10.1016/j.gee.2022.09.006

Carbon-doped CuFe2O4 with C-O-M channels for enhanced Fenton-like degradation of tetracycline hydrochloride: From construction to mechanism

doi: 10.1016/j.gee.2022.09.006
  • Carbon-doped copper ferrite (C–CuFe2O4) was synthesized by a simple two-step hydrothermal method, which showed enhanced tetracycline hydrochloride (TCH) removal efficiency as compared to the pure CuFe2O4 in Fenton-like reaction. A removal efficiency of 94% was achieved with 0.2 g L-1 catalyst and 20 mmol L-1 H2O2 within 90 min. We demonstrated that 5% C–CuFe2O4 catalyst in the presence of H2O2 was significantly efficient for TCH degradation under the near-neutral pH (5–9) without buffer. Multiple techniques, including SEM, TEM, XRD, FTIR, Raman, XPS Mössbauer and so on, were conducted to investigate the structures, morphologies and electronic properties of as-prepared samples. The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H2O2 to generate OH and O2-. Particularly, theoretical calculations display that the p, p, d orbital hybridization of C, O, Cu and Fe can form C–O–Cu and C–O–Fe bonds, and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels, thus forming electron-rich reactive centers around Fe and Cu. This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.

     

  • loading
  • [1]
    M. Narayanan, M. El-Sheekh, Y. Ma, A. Pugazhendhi, D. Natarajan, G. Kandasamy, R. Raja, R.M.S. Kumar, S. Kumarasamy, G. Sathiyan, R. Geetha, B. Paulraj, G. Liu, S. Kandasamy, Environ. Pollut. 300 (2022) 118922.
    [2]
    X. Yu, Q. Sui, S. Lyu, W. Zhao, D. Wu, G. Yu, D. Barcelo, Environ. Sci. Technol. 55 (2021) 4822-4830.
    [3]
    H. Zhang, Q. Jia, F. Yan, Q. Wang, Green Energy Environ. 7 (2020) 105-115.
    [4]
    H. Zhang, Q. Jia, F. Yan, Q. Wang, Green Energy Environ. 7 (2020) 105-115.
    [5]
    Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He, Appl. Catal. B Environ. 255 (2019) 117739.
    [6]
    S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, Appl. Catal. B Environ. 280 (2021) 119386.
    [7]
    X. Dong, B. Ren, Z. Sun, C. Li, X. Zhang, M. Kong, S. Zheng, D.D. Dionysiou, Appl. Catal. B Environ. 2019, 253, 206-217.
    [8]
    Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu, S. Zhao, Z. Q. Liu, Angew. Chem. Int. Ed. 61 (2022) e202114696.
    [9]
    Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal. B Environ. 314 (2022) 121503.
    [10]
    L. Wang, J. Zhang, Y. Zhang, H. Yu, Y. Qu, J. Yu, Small 18 (2022) 2104561.
    [11]
    Y. Ding, L. Fu, X. Peng, M. Lei, C. Wang, J. Jiang, Chem. Eng. J. 427 (2022) 131776.
    [12]
    R.R. Ding, W.Q. Li, C.S. He, Y.R. Wang, X.C. Liu, G.N. Zhou, Y. Mu, Appl. Catal. B Environ. 291 (2021) 120069.
    [13]
    R. Li, M. Cai, Z. Xie, Q. Zhang, Y. Zeng, H. Liu, G. Liu, W. Lv, Appl. Catal. B Environ. 244 (2019) 974-982.
    [14]
    X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, L. Guo, Sensor. Actuat. B. Chem. 322 (2020) 128615.
    [15]
    H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian, C. Wang, Adv. Colloid Interface Sci. 294 (2021) 102486.
    [16]
    K. Keterew, B.B. Mamba, SM&T. 23 (2020) e00140.
    [17]
    S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren, L. Deng, J. Mater. Chem. A. 6 (2018) 11078-11104.
    [18]
    S. Lu, L. Sui, M. Wu, S. Zhu, X. Yong, B. Yang, Adv. Sci. 6 (2019) 1801192.
    [19]
    S. Chung, R. A. Revia, M. Zhang, Adv. Mater. 33 (2021) 1-26.
    [20]
    X. Liu, J. Liu, Y. Yang, Y. W. Li, X. Wen, ACS Catal. 11 (2021) 2156-2181.
    [21]
    Q. Jin, L. Xiao, W. He, H. Cui, C. Wang, Green Energy Environ. (2022) https://doi.org/10.1016/j.gee.2022.03.008.
    [22]
    X. Liu, D.R. Salahub, J. Am. Chem. Soc. 137 (2015) 4249-4259.
    [23]
    J.G. Seong, T.H. Ko, D. Lei, W.K. Choi, Y.S. Kuk, M.K. Seo, B.S. Kim, Green Energy Environ. (2021). https://doi.org/10.1016/j.gee.2021.01.015.
    [24]
    L. Huang, J. Li, Z. Wang, Y. Li, X. He, Y. Yuan, Carbon 143 (2019) 507-516.
    [25]
    K. Ye, Y. Li, H. Yang, M. Li, Y. Huang, S. Zhang, H. Ji, Appl. Catal. B Environ. 259 (2019) 118085.
    [26]
    Y. He, Z. Yin, Z. Wang, H. Wang, W. Xiong, B. Song, H. Qin, P. Xu, G. Zeng, J. Mater. Chem. A. 10 (2022) 9788-9820.
    [27]
    Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Adv. Energy Mater. 12 (2022) 2103820.
    [28]
    X. Wang, B. Zhu, T. Liu, L. Zhang, J. Yu, Small Methods 6 (2022) 2101269.
    [29]
    C. Yang, S. Wan, B. Zhu, J. Yu, S. Cao, Angew. Chem. Int. Ed. 430070 (2022).
    [30]
    J. Li, X. Li, L. Zeng, S. Fan, M. Zhang, W. Sun, X. Chen, M.O. Tade, S. Liu, Nanoscale 11 (2019) 3979-3992.
    [31]
    H. Qin, H. Cheng, H. Li, Y. Wang, Chem. Eng. J. 396 (2020) 125304.
    [32]
    X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, W. Lu, Carbon 157 (2020) 130-139.
    [33]
    W. Zhang, B. Quan, C. Lee, S. Park, X. Li, E. Choi, G. Diao, Y. Piao, ACS Appl. Mater. 7 (2015) 2404-2414.
    [34]
    X. Ma, R. Hao, Wang. Z, P. Xu. Y. Luo, Y. Zhao, Chem. Eng. J. 401 (2020) 126101.
    [35]
    Y. Huang, Y. Liang, Y. Rao, D. Zhu, J.J. Cao, Z. Shen, W. Ho, S.C. Lee, Environ. Sci. Technol. 51 (2017) 2924-2933.
    [36]
    Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Energy Environ. Sci. 11 (2018) 2581-2589.
    [37]
    T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W.A. Sasangka, H. Liao, C.L. Gan, G.G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z.J. Xu, Nat. Catal. 2 (2019) 763-772.
    [38]
    Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, Electrochim. Acta. 102 (2013) 51-57.
    [39]
    M. Ji, Y. Liu, J. Di, R. Chen, Z. Chen, J. Xia, H. Li, Appl. Catal. B Environ. 237 (2018) 1033-1043.
    [40]
    S.P. Keerthana, R. Yuvakkumar, G. Ravi, S. Pavithra, M. Thambidurai, C. Dang, D. Velauthapillai, Environ. Res. 200 (2021) 111528.
    [41]
    A.A. Oladipo, A.O. Ifebajo, M. Gazi, Appl. Catal. B Environ. 243 (2019) 243-252.
    [42]
    S. Huang, Q. Zhang, P. Liu, S. Ma, B. Xie, K. Yang, Y. Zhao, Appl. Catal. B Environ. 263 (2020) 118336.
    [43]
    S. Yin, W. Chen, I.M.S.K. Ilankoon, Int. J. Miner. Metall. Mater. 29(2022) 59-69.
    [44]
    L. Qin, Z. Xu, Y. Zheng, C. Li, J. Mao, G. Zhang, Adv. Funct. Mater. 30 (2020) 1910257.
    [45]
    Y. Wang, H. Zhao, M. Li, J. Fan, G. Zhao, Appl. Catal. B Environ. 147 (2014) 534-545.
    [46]
    B. Mondal, M. Kundu, S. P. Mandal, R. Saha, U. K. Roy, A. Roychowdhury, D. Das, ACS Omega 4 (2019) 13845-13852.
    [47]
    G. Greczynski, L. Hultman, Prog. Mater. Sci. 107 (2020) 100591.
    [48]
    M.A. Ahsan, A.R. Puente Santiago, Y. Hong, N. Zhang, M. Cano, E. Rodriguez-Castellon, J.C. Noveron, J. Am. Chem. Soc. 142 (2020) 14688-14701.
    [49]
    M.A. Ahsan, T. He, K. Eid, A.M. Abdullah, M.F. Sanad, A. Aldalbahi, J.C. Noveron, ACS Appl. Mater. Interfaces 14 (2022) 3919-3929.
    [50]
    X.X. Luo, W.H. Li, H.J. Liang, H.X. Zhang, K.D. Du, X.T. Wang, X.L. Wu, Angew. Chem. Int. Ed. 61 (2022) e202117661.
    [51]
    Q. Mu, W. Zhu, X. Li, C. Zhang, Y. Su, Y. Lian, Y. Peng, Appl. Catal. B Environ. 262 (2020) 118144.
    [52]
    R. Ding, Q. Chen, Q. Luo, L. Zhou, Y. Wang, Y. Zhang, G. Fan, Green Chem. 22 (2020), 835-842.
    [53]
    P. Koley, S.C. Shit, B. Joseph, S. Pollastri, Y.M. Sabri, E.L.H. Mayes, L. Nakka, J. Tardio, J. Mondal, ACS Appl. Mater. 12 (2020) 21682-21700.
    [54]
    N. Xu, Y. Zhang, T. Zhang, Y. Liu, J. Qiao. Nano Energy 57 (2019) 176-185.
    [55]
    J. Lim, Y. Yang, M. R. Hoffmann, Environ. Sci. Technol. 53 (2019) 6972-6980.
    [56]
    S.S. Deshmukh, A.V. Humbe, A. Kumar, R.G. Dorik, K.M. Jadhav, J. Alloy. Compd. 704 (2017) 227-236.
    [57]
    J.Z. Jiang, G.F. Goya, H.R. Rechenberg, J. Phys.: Condens. Matter 11 (1999) 4063.
    [58]
    S. Da Dalt, A.S. Takimi, T.M. Volkmer, V.C. Sousa, C.P. Bergmann, Powder Technol. 210 (2011) 103-108.
    [59]
    B. J. Borah, Y. Yamada, P. Bharali, ACS Appl. Mater. 3 (2020) 3488-3496.
    [60]
    C. Hu, L. Dai, Angew. Chemie. Int. Ed. 55 (2016) 11736-11758.
    [61]
    J. Jiang, J. Gao, S. Niu, X. Wang, T. Li, S. Liu, S. Dong, J. Environ. Sci. 106 (2021) 147-160.
    [62]
    J.J. Plgnatello, Environ. Sci. Technol. 26 (1992) 944-951.
    [63]
    R. Liu, Y. Xu, B. Chen, Environ. Sci. Technol. 52 (2018) 7043-7053.
    [64]
    X. Jiang, Y. Guo, L. Zhang, W. Jiang, R. Xie, Chem. Eng. J. 341 (2018) 392-401.
    [65]
    J. Li, Y. Wan, Y. Li, G. Yao, B. Lai, Appl. Catal. B Environ. 256 (2019) 117782.
    [66]
    L. Li, C. Lai, F. Huang, M. Cheng, G. Zeng, D. Huang, B. Li, S. Liu, M.M. Zhang, L. Qin, M. Li, J. He, Y. Zhang, L. Chen, Water Res. 160 (2019) 238-248.
    [67]
    P.H. Chang, Z. Li, T.L. Yu, S. Munkhbayer, T.H. Kuo, Y.C. Hung, K.H. Lin, J. Hazard. Mater. 165 (2009) 148-155.
    [68]
    A. Majumdar, U. Ghosh, A. Pal, J. Alloys Compd. 900 (2022) 163400.
    [69]
    F. Qin, Y. Peng, G. Song, Q. Fang, R. Wang, C. Zhang, G. Zeng, D. Huang, C. Lai, Y. Zhou, X. Tan, M. Cheng, S. Liu, J. Hazard. Mater. 398 (2020) 122816.
    [70]
    C. Calik, D.I. J. Cifci, Environ. Manag. 304 (2022) 114234.
    [71]
    Z. Wang, C. Lai, L. Qin, Y. Fu, J. He, D. Huang, Chem. Eng. J. 392 (2020) 124851.
    [72]
    J. Zhang, M. Yan, G. Sun, X. Li, B. Hao, K. Liu, Chemosphere 304 (2022) 135318.
    [73]
    L. Li, Y. M. Gan, Z. H. Lu, S. Qing, Z. Gao, R. Zhang, G. Feng, Appl. Surf. Sci. 521 (2020) 146478.
    [74]
    F. Liu, J. Liu, R. Fang, Y. Li, Y. Yang, J. Phys. Chem. C. 125 (2021) 19190-19199.
    [75]
    A.M.M.T. Karim, M. Jubair, M. Nuruzzaman, M.A.K. Zilani, ACS Omega 7 (2022) 13588-13603.
    [76]
    J.K. Satyam, S.M. Saini, Physica B: Condensed Matter. 631 (2022) 413709.
    [77]
    L. Lyu, W. Cao, G. Yu, D. Yan, K. Deng, C. Lu, C. Hu, J. Hazard. Mater., 383 (2020) 121182.
    [78]
    X. Zhang, Z. Yao, Y. Zhou, Z. Zhang, G. Lu, Z. Jiang, Chem. Eng. J. 411 (2021) 128535.
    [79]
    S. Koo, O.K. Park, J. Kim, S.I. Han, T.Y. Yoo, N. Lee, Y.G. Kim, H. Kim, C. Lim, J.S. Bae, J. Yoo, D. Kim, S.H. Choi, T. Hyeon, ACS Nano 16 (2022) 2535-2545.
    [80]
    H. Zhao, L. Qian, X. Guan, D. Wu, G. Zhao, Environ. Sci. Technol. 50 (2016) 5225-5233.
    [81]
    W. Chen, S. Yin, G. Zhou, Z. Li, Q. Song, J. Clean. Prod. 332(2022) 130129.
    [82]
    Q. Wu, H. Yang, L. Kang, Z. Gao, F. Ren, Appl. Catal. B Environ. 263 (2020) 118282.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return