Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Guoshen Yang, Gangrui Qu, Chi Fang, Jie Deng, Xianqi Xu, Yinghao Xie, Tian Sun, Yachao Zhu, Jiaxin Zheng, Hang Zhou. An aqueous magnesium-ion hybrid supercapacitor operated at -50 ℃. Green Energy&Environment, 2024, 9(4): 702-712. doi: 10.1016/j.gee.2022.09.004
Citation: Guoshen Yang, Gangrui Qu, Chi Fang, Jie Deng, Xianqi Xu, Yinghao Xie, Tian Sun, Yachao Zhu, Jiaxin Zheng, Hang Zhou. An aqueous magnesium-ion hybrid supercapacitor operated at -50 ℃. Green Energy&Environment, 2024, 9(4): 702-712. doi: 10.1016/j.gee.2022.09.004

An aqueous magnesium-ion hybrid supercapacitor operated at -50 ℃

doi: 10.1016/j.gee.2022.09.004
  • The recent advances in aqueous magnesium-ion hybrid supercapacitor (MHSC) have attracted great attention as it brings together the benefits of high energy density, high power density, and synchronously addresses cost and safety issues. However, the freeze of aqueous electrolytes discourages aqueous MHSC from operating at low-temperature conditions. Here, a low-concentration aqueous solution of 4 mol L-1 Mg(ClO4)2 is devised for its low freezing point (-67 ℃) and ultra-high ionic conductivity (3.37 mS cm-1 at -50 ℃). Both physical characterizations and computational simulations revealed that the Mg(ClO4)2 can effectively disrupt the original hydrogen bond network among water molecules via transmuting the electrolyte structure, thus yielding a low freezing point. Thus, the Mg(ClO4)2 electrolytes endue aqueous MHSC with a wider temperature operation range (-50 ℃–25 ℃) and a higher energy density of 103.9 Wh kg-1 at 3.68 kW kg-1 over commonly used magnesium salts (i.e., MgSO4 and Mg(NO3)2) electrolytes. Furthermore, a quasi-solid-state MHSC based on polyacrylamide-based hydrogel electrolyte holds superior low-temperature performance, excellent flexibility, and high safety. This work pioneers a convenient, cheap, and eco-friendly tactic to procure low-temperature aqueous magnesium-ion energy storage device.

     

  • loading
  • [1]
    G. Glenk, S. Reichelstein, Nature Energy 4 (2019) 216-222.
    [2]
    M. Liao, L. Ye, Y. Zhang, T. Chen, H. Peng, Advanced Electronic Materials 5 (2019) 1800456.
    [3]
    S. Lin, F. Wang, Z. Shao, Journal of Materials Science 56 (2020) 1943-1979.
    [4]
    D. Wu, W. Ren, Y. Nuli, J. Yang, J. Wang, Journal of Materials Science & Technology 91 (2021) 168-177.
    [5]
    H. Li, W. Zhang, K. Sun, J. Guo, K. Yuan, J. Fu, T. Zhang, X. Zhang, H. Long, Z. Zhang, Y. Lai, H. Sun, Advanced Energy Materials 11 (2021) 2100867.
    [6]
    Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, Journal of Materials Science 56 (2020) 173-200.
    [7]
    G. Liang, X. Li, Y. Wang, S. Yang, Z. Huang, Q. Yang, D. Wang, B. Dong, M. Zhu, C. Zhi, Nano Research Energy 1 (2022) e9120002.
    [8]
    G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Adv Mater 26 (2014) 2676-2682, 2615.
    [9]
    B. Hao, Z. Deng, S. Bi, J. Ran, D. Cheng, L. Luo, G. Cai, X. Wang, X. Tang, Ionics 27 (2020) 279-288.
    [10]
    L. Han, H. Huang, X. Fu, J. Li, Z. Yang, X. Liu, L. Pan, M. Xu, Chemical Engineering Journal 392 (2020) 123733.
    [11]
    Y. Liu, N. Xin, Q. Yang, W. Shi, J Colloid Interface Sci 583 (2021) 288-298.
    [12]
    L. Han, J. Li, X. Zhang, H. Huang, Z. Yang, G. Zhu, M. Xu, L. Pan, ACS Sustainable Chemistry & Engineering 9 (2021) 9165-9176.
    [13]
    D. Zhang, Q. Chen, J. Zhang, T. Sun, Journal of Alloys and Compounds 873 (2021) 159872.
    [14]
    H. Zhang, K. Ye, K. Zhu, R. Cang, X. Wang, G. Wang, D. Cao, ACS Sustainable Chemistry & Engineering 5 (2017) 6727-6735.
    [15]
    H. Zhang, D. Cao, X. Bai, H. Xie, X. Liu, X. Jiang, H. Lin, H. He, ACS Sustainable Chemistry & Engineering 7 (2019) 6113-6121.
    [16]
    X. Cao, L. Wang, J. Chen, J. Zheng, Chemelectrochem 5 (2018) 2789-2794.
    [17]
    X. Zang, R. Zhang, Z. Zhen, W. Lai, C. Yang, F. Kang, H. Zhu, Nano Energy 40 (2017) 224-232.
    [18]
    Y. Sui, M. Yu, Y. Xu, X. Ji, Journal of The Electrochemical Society 169 (2022) 030537.
    [19]
    E.B. Moore, V. Molinero, Nature 479 (2011) 506-508.
    [20]
    M. Matsumoto, S. Saito, I. Ohmine, Nature 416 (2002) 409-413.
    [21]
    J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang, S. Song, ACS Appl Mater Interfaces 13 (2021) 16454-16468.
    [22]
    N. Chang, T. Li, R. Li, S. Wang, Y. Yin, H. Zhang, X. Li, Energy & Environmental Science 13 (2020) 3527-3535.
    [23]
    X. Jin, L. Song, C. Dai, H. Ma, Y. Xiao, X. Zhang, Y. Han, X. Li, J. Zhang, Y. Zhao, Z. Zhang, L. Duan, L. Qu, Energy Storage Materials 44 (2022) 517-526.
    [24]
    H. Wang, H. Zhang, Y. Cheng, K. Feng, X. Li, H. Zhang, Electrochimica Acta 278 (2018) 279-289.
    [25]
    Y. Sun, Y. Wang, L. Liu, B. Liu, Q. Zhang, D. Wu, H. Zhang, X. Yan, Journal of Materials Chemistry A 8 (2020) 17998-18006.
    [26]
    L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang, L. Ma, T. Deng, J.M. Seminario, E. Hu, X.Q. Yang, P.B. Balbuena, C. Wang, Angew Chem Int Ed Engl 60 (2021) 18845-18851.
    [27]
    N.V. Nucci, J.M. Vanderkooi, J Mol Liq 143 (2008) 160-170.
    [28]
    C.P.R. Nair, V. Unnikrishnan, ACS Omega 5 (2020) 9391-9397.
    [29]
    D. Ji, Z. Liu, B. Jiang, X. Luo, International Journal of Hydrogen Energy 46 (2021) 13960-13970.
    [30]
    Z. Shi, L. Xue, J. Wu, Q. Guo, Q. Xia, M. Ni, P. Wang, S.V. Savilov, S.M. Aldoshin, F. Zan, H. Xia, Journal of The Electrochemical Society 168 (2021) 120549.
    [31]
    L. Hu, R. Gao, A. Zhang, R. Yang, X. Zang, S. Wang, S. Yao, Z. Yang, H. Hao, Y.-M. Yan, Nano Energy 74 (2020) 104891.
    [32]
    S. Plimpton, Journal of Computational Physics 117 (1995) 1-19.
    [33]
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles, 1988.
    [34]
    V.N. Agieienko, Y.V. Kolesnik, O.N. Kalugin, Journal of Chemical Physics 140 (2014) 194501.
    [35]
    R. Deivanayagam, M. Cheng, M. Wang, V. Vasudevan, T. Foroozan, N.V. Medhekar, R. Shahbazian-Yassar, Acs Applied Energy Materials 2 (2019) 7980-7990.
    [36]
    J. Aqvist, Journal of Physical Chemistry 94 (1990) 8021-8024.
    [37]
    G. Heinje, W.a.P. Luck, K. Heinzinger, Journal of Physical Chemistry 91 (1987) 331-338.
    [38]
    W.R. Cannon, B.M. Pettitt, J.A. Mccammon, Journal of Physical Chemistry 98 (1994) 6225-6230.
    [39]
    J.N.C. Lopes, A.a.H. Padua, Journal of Physical Chemistry B 108 (2004) 16893-16898.
    [40]
    J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Computer Physics Communications 167 (2005) 103-128.
    [41]
    S. Goedecker, M. Teter, J. Hutter, Physical Review B 54 (1996) 1703-1710.
    [42]
    T. Sun, S. Zheng, H. Du, Z. Tao, Nanomicro Lett 13 (2021) 204.
    [43]
    Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Nat Commun 11 (2020) 4463.
    [44]
    F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang, Z. Niu, Angew Chem Int Ed Engl 60 (2021) 13882-13886.
    [45]
    V.V. Shcherbakov, Russian Journal of Electrochemistry 45 (2009) 1292-1295.
    [46]
    Z. Dou, L. Wang, J. Hu, W. Fang, C. Sun, Z. Men, Journal of Molecular Liquids 313 (2020) 113595.
    [47]
    Y.H. Zhang, C.K. Chan, Journal of Physical Chemistry A 107 (2003) 5956-5962.
    [48]
    B. Tansel, J. Sager, T. Rector, J. Garland, R.F. Strayer, L. Levine, M. Roberts, M. Hummerick, J. Bauer, Separation and Purification Technology 51 (2006) 40-47.
    [49]
    H. Qu, Z. Ling, X. Qi, Y. Xin, C. Liu, H. Cao, Sensors (Basel) 21 (2021) 6973.
    [50]
    S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Adv Mater 34 (2022) e2110140.
    [51]
    Q. Sun, Chemical Physics Letters 568-569 (2013) 90-94.
    [52]
    L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nature Energy 4 (2019) 495-503.
    [53]
    Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng, Y. Zhang, Z. Tao, J. Chen, Angew Chem Int Ed Engl 58 (2019) 16994-16999.
    [54]
    T. Sun, H. Du, S. Zheng, Z. Tao, Journal of Power Sources 515 (2021) 230643.
    [55]
    X. Li, J. Zhu, B. Zhang, Y. Jiao, J. Huang, F. Wang, Ceramics International 47 (2021) 12211-12220.
    [56]
    M. Maher, B. Yousif, M.E.A. Abo-Elsoud, S. Hassan, Journal of Materials Science-Materials in Electronics 32 (2021) 27721-27743.
    [57]
    Y. Tang, X. Li, H. Lv, W. Wang, Q. Yang, C. Zhi, H. Li, Angew Chem Int Ed Engl 60 (2021) 5443-5452.
    [58]
    H. Zhang, K. Ye, K. Zhu, R. Cang, J. Yan, K. Cheng, G. Wang, D. Cao, Electrochimica Acta 256 (2017) 357-364.
    [59]
    X. Cao, L. Wang, J. Chen, J. Zheng, Journal of Materials Chemistry A 6 (2018) 15762-15770.
    [60]
    S. Maitra, R. Mitra, T.K. Nath, Current Applied Physics 27 (2021) 73-88.
    [61]
    X.N. Zang, S. Wang, R.P. Zhang, Journal of Physical Chemistry Letters 12 (2021) 4434-4439.
    [62]
    X. Li, D. Lou, H. Wang, X. Sun, J. Li, Y.-N. Liu, Advanced Functional Materials 30 (2020) 2007291.
    [63]
    X. Li, L. Liu, X. Wang, Y.S. Ok, J.a.W. Elliott, S.X. Chang, H.-J. Chung, Scientific Reports 7 (2017) 1685.
    [64]
    J. Wang, F. Liu, F. Tao, Q. Pan, Acs Applied Materials & Interfaces 9 (2017) 27745-27753.
    [65]
    Z. Liu, J. Zhang, J. Liu, Y. Long, L. Fang, Q. Wang, T. Liu, Journal of Materials Chemistry A 8 (2020) 6219-6228.
    [66]
    S. Wu, D. Lou, H. Wang, D. Jiang, X. Fang, J. Meng, X. Sun, J. Li, Chemical Engineering Journal 435 (2022) 135057.
    [67]
    S. Peng, X. Jiang, X. Xiang, K. Chen, G. Chen, X. Jiang, L. Hou, Electrochimica Acta 324 (2019) 134874.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return