Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Qiang Han, Lele Cai, Zhaofeng Yang, Yanjie Hu, Hao Jiang, Chunzhong Li. New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries. Green Energy&Environment, 2024, 9(3): 556-564. doi: 10.1016/j.gee.2022.09.003
Citation: Qiang Han, Lele Cai, Zhaofeng Yang, Yanjie Hu, Hao Jiang, Chunzhong Li. New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries. Green Energy&Environment, 2024, 9(3): 556-564. doi: 10.1016/j.gee.2022.09.003

New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries

doi: 10.1016/j.gee.2022.09.003
  • Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries (LIBs). However, the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry. Herein, we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi0.83Co0.12Mn0.05O2 (SC-NCM83) cathodes by the regulation of pre-lithiation kinetics. The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase, which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process. After coating a layer of Li2O–B2O3, the resultant cathodes deliver superior cycling stability with 90.9% capacity retention at 1C after 300 cycles in pouch-type full batteries. The enhancement mechanism has also been clarified. These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality single-crystalline Ni-rich cathodes.

     

  • loading
  • [1]
    N.S. Lewis, Science 351 (2016) 353-362.
    [2]
    Y. Jia, Y.Ye, J. Liu, S. Zheng, W. Lin, Z. Wang, S. Li, F. Pan, J. Zheng, Sci. China Mater. 65 (2022) 913-919.
    [3]
    Y. Lu, Q. Zhang, J. Chen, Sci. China Chem. 62 (2019) 533-548.
    [4]
    M. Li, J. Lu, Z.W. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561.
    [5]
    X. Lu, T. Li, A. Bertei, J.I.S. Cho, T.M.M. Heenan, M.F. Rabuni, K. Li, D.J.L. Brett, P.R. Shearing, Energy & Environ. Sci. 11 (2018) 2390-2403.
    [6]
    W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 54 (2015) 4440-4457.
    [7]
    Y. Xia, J. Zheng, C. Wang, M. Gu, Nano Energy 49 (2018) 434-452.
    [8]
    Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, C. Wang, J.G. Zhan, Y. Qi, J. Xiao, Science, 370 (2020) 1313-1317.
    [9]
    W. Zhao, L. Zou, L. Zhang, X. Fan, H. Zhang, F. Pagani, E. Brack, L. Seidl, X. Ou, K. Egorov, X. Guo, G. Hu, S. Trabesinger, C. Wang, C. Battaglia, Small, 18 (2022) 2107357.
    [10]
    X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li, Y. Yang, Nano Energy 70 (2020): 104450.
    [11]
    X. Fan, Y. Huang, H. Wei, L. Tang, Z. He, C. Yan, J. Mao, K. Dai, J. Zheng, Adv. Funct. Mater. 32 (2022) 2109421.
    [12]
    X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang, J. Zhang, L. Zou, L. Seidl, Y. Li, G. Hu, C. Battaglia, Y. Yang, Nat. Commun. 12 (2021) 5320.
    [13]
    Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang, X. Zhu, F. Meng, K. Liu, H. Geng, J. Xu, F. Zan, P. Wang, L. Gu, H. Xia, Adv. Mater. 33 (2021) 2003524.
    [14]
    X. Zhu, F. Meng, Q. Zhang, L. Xue, H. Zhu, S. Lan, Q. Liu, J. Zhao, Y.H. Zhuang, Q.B. Guo, B. Liu, L. Gu, X. Lu, Y. Ren and H. Xia, Nat. Sustain. 4 (2020) 392-401.
    [15]
    J. Langdon, A. Manthiram, Energy Storage. Mater. 37 (2021) 143-160.
    [16]
    H. Li, J. Li, N. Zaker, N. Zhang, G.A. Botton, J.R. Dahn, J. Electrochem. Soc. 166 (2019) A1956-A1963.
    [17]
    E. Trevisanello, R. Ruess, G. Conforto, F.H. Richter J. Janek, Adv. Energy Mater. 11 (2021) 2003400.
    [18]
    D. Pritzl, T. Teufl, A.T.S. Freiberg, B. Strehle, J. Sicklinger, H. Sommer, P. Hartmann, H.A. Gasteiger, J. Electrochem. Soc. 166 (2019) A4056-A4066.
    [19]
    C. Gao, H. Liu, S. Bi, H. Li, C. Ma, Green Energy Environ. 6 (2021) 114-123.
    [20]
    J. Bai, W. Sun, J. Zhao, D. Wang, P. Xiao, J.Y.P. Ko, A. Huq, G. Ceder, F. Wang, Chem. Mater. 32 (2020) 9906-9913.
    [21]
    M.J. Zhang, G. Teng, Y.K. Chen-Wiegart, Y. Duan, J.Y.P. Ko, J. Zheng, J. Thieme, E. Dooryhee, Z Chen, J. Bai, K. Amine, F. Pan, F. Wang, J. Am. Chem. Soc. 140 (2018) 12484-12492.
    [22]
    D. Wang, R. Kou, Y. Ren, C.J. Sun, H. Zhao, M.J. Zhang, Y. Li, A. Huq, J.Y.P. Ko, F. Pan, Y.K. Sun, Y. Yang, K. Amine, J. Bai, Z. Chen, F. Wang, Adv. Mater. 29 (2017) 1606715.
    [23]
    M. Wolfman, X. Wang, J.C. Garcia, P. Barai, J.E. Stubbs, P.J. Eng, O. Kahvecioglu, T.L. Kinnibrugh, E. Madsen, H. Iddir, V. Srinivasan, T.T. Fister, Adv. Energy Mater. 12 (2022) 2102951.
    [24]
    W. Hua, K. Wang, M. Knapp, B. Schwarz, S. Wang, H. Liu, J. Lai, M. Muller, A. Schokel, A. Missyul, S.D. Ferreira, X.D. Guo, J.R. Binder, J. Xiong, S. Indris, H. Ehrenberg, Chem. Mater. 32 (2020) 4984-4997.
    [25]
    S. Wang, W. Hua, A. Missyul, M.S.D. Darma, A. Tayal, S. Indris, H. Ehrenberg, L.J. Liu, M. Knapp, Adv. Funct. Mater. 31 (2021) 2009949.
    [26]
    R. Weber, H. Li, W. Chen, C.Y. Kim, K. Plucknett, J.R. Dahn, J. Electrochem. Soc. 167 (2020) 100501.
    [27]
    H. Li, P. Zhou, F. Liu, H. Li, F. Cheng, J. Chen, Chemical Science 10 (2019) 1374-1379.
    [28]
    H. Yu, S. Wang, Y. Hu, G. He, L.Q. Bao, I.P. Parkin, H. Jiang, Green Energy Environ. 7 (2022) 266-274.
    [29]
    D. Luo, J. Cui, B. Zhang, J. Fan, P. Liu, X. Ding, H. Xie, Z. Zhang, J. Guo, F. Pan, Z. Lin, Adv. Funct. Mater. 31 (2021) 2009310.
    [30]
    H. Yu, Y. Cao, L. Chen, Y. Hu, X. Duan, S. Dai, C. Li, H. Jiang, Nat. Commun. 12 (2021) 4564.
    [31]
    Y. Kim, H. Park, J.H. Warner, A. Manthiram, Acs Energy Lett. 6 (2021) 941-948.
    [32]
    Z. Wu, J. Luo, J. Peng, H. Liu, B. Chang, X. Wang, Green Energy Environ. 6 (2021) 517-527.
    [33]
    H.H. Ryu, K.J. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Y. Sun, Adv. Energy Mater. 9 (2019) 1902698.
    [34]
    U.H. Kim, J.H. Park, A. Aishova, R.M. Ribas, R.S. Monteiro, K.J. Griffith, C.S. Yoon, Y.K. Sun, Adv. Energy Mater. 11 (2021) 2100884.
    [35]
    Q. Lin, W. Guan, J. Zhou, J. Meng, W. Huang, T. Chen, Q. Gao, X. Wei, Y. Zeng, J. Li, Z. Zhang, Nano Energy 76 (2020) 105021.
    [36]
    H. Zhu, H. Yu, Z. Yang, H. Jiang, C. Li, Chin. J. Chem. Eng. 37 (2021) 144-151.
    [37]
    M. Hofmann, M. Kapuschinski, U. Guntow, G. A. Giffin, J. Electrochem. Soc. 167 (2020) 140512.
    [38]
    H. Yu, Y. Li, Y. Hu, H. Jiang, C. Li, Ind. Eng. Chem. Res. 58 (2019) 4108-4115.
    [39]
    Y. Li, X. Li, Z. Wang, H. Guo, J. Wang, Sci. China Mater. 61 (2018) 719-727.
    [40]
    J. Duan, G. Hu, Y. Cao, C. Tan, C. Wu, K. Du, Z. Peng, J. Power Sources 326 (2016) 322-330.
    [41]
    C. Hu, K. Ma, Y. Hu, A. Chen, P. Saha, H. Jiang, C. Li, Green Energy Environ. 6 (2021) 75-82.
    [42]
    M. Bianchini, F. Fauth, P. Hartmann, T. Brezesinski, J. Janek. J. Mater. Chem. A 8 (2020) 1808-1820.
    [43]
    K. Krynicki, C.D. Green, D.W. Sawyer, Faraday Discuss. Chem. Soc. 66 (1978) 199-208.
    [44]
    W. Hu, C. Zhang, H. Jiang, M. Zheng, Q. Wu, Q. Dong, Electrochim. Acta 243 (2017) 105-111.
    [45]
    A. Zhou, W. Wang, Q. Liu, Y. Wang, X. Yao, F. Qing, E. Li, T. Yang, L. Zhang, J. Li, J. Power Sources 362 (2017) 131-139.
    [46]
    H.S. Kang, P. Santhoshkumar, J.W. Park, G.S. Sim, M. Nanthagopal, C.W. Lee, Korean J. Chem. Eng. 37(2020) 1331-1339.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (210) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return