Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
A.K.K. Vikla, K. Koichumanova, Songbo He, K. Seshan. Aqueous-phase reforming of hydroxyacetone solution to bio-based H2 over supported Pt catalysts. Green Energy&Environment, 2024, 9(4): 777-788. doi: 10.1016/j.gee.2022.09.002
Citation: A.K.K. Vikla, K. Koichumanova, Songbo He, K. Seshan. Aqueous-phase reforming of hydroxyacetone solution to bio-based H2 over supported Pt catalysts. Green Energy&Environment, 2024, 9(4): 777-788. doi: 10.1016/j.gee.2022.09.002

Aqueous-phase reforming of hydroxyacetone solution to bio-based H2 over supported Pt catalysts

doi: 10.1016/j.gee.2022.09.002
  • Aqueous-phase reforming (APR) is an attractive process to produce bio-based hydrogen from waste biomass streams, during which the catalyst stability is often challenged due to the harsh reaction conditions. In this work, three Pt-based catalysts supported on C, AlO(OH), and ZrO2 were investigated for the APR of hydroxyacetone solution in a fixed bed reactor at 225 ℃ and 35 bar. Among them, the Pt/C catalyst showed the highest turnover frequency for H2 production (TOF of 8.9 mol molPt-1 min-1) and the longest catalyst stability. Over the AlO(OH) and ZrO2 supported Pt catalysts, the side reactions consuming H2, formation of coke, and Pt sintering result in a low H2 production and the fast catalyst deactivation. The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase, minimize the hydrogenation of the oxygenates, maximize the WGS reaction, and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.

     

  • loading
  • [1]
    J.R. Rostrup-Nielsen, in Catalysis - Science and Technology: vol. 5, eds. Anderson, J. R.; Boudart, M., Springer, Berlin, Heidelberg, 1984, pp. 1-117.
    [2]
    R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418 (2002) 964-967.
    [3]
    J.W. Shabaker, R.R. Davda, G.W. Huber, R.D. Cortright, J.A. Dumesic, J. Catal. 215 (2003) 344-352.
    [4]
    G.W. Huber, J.W. Shabaker, S.T. Evans, J.A. Dumesic, Appl. Catal., B 62 (2006) 226-235.
    [5]
    R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, Appl. Catal., B 43 (2003) 13-26.
    [6]
    A.V. Kirilin, B. Hasse, A.V. Tokarev, L.M. Kustov, G.N. Baeva, G.O. Bragina, A.Y. Stakheev, A.-R. Rautio, T. Salmi, B.J.M. Etzold, J.-P. Mikkola, D.Y. Murzin, Catal. Sci. Technol. 4 (2014) 387-401.
    [7]
    D.J.M. De Vlieger, A.G. Chakinala, L. Lefferts, S.R.A. Kersten, K. Seshan, D.W.F. Brilman, Appl. Catal., B 111-112 (2012) 536-544.
    [8]
    K. Koichumanova, A.K.K. Vikla, D.J.M. De Vlieger, K. Seshan, B.L. Mojet, L. Lefferts, ChemSusChem 6 (2013) 1717-1723.
    [9]
    R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, Appl. Catal., B 56 (2005) 171-186.
    [10]
    T.M.C. Hoang, A.K.K. Vikla, K. Seshan, in Biomass Sugars for Non-fuel Applications, eds. Murzin, D.; Simakova, O., The Royal Society of Chemistry, 2016, pp. 54-88.
    [11]
    D.J.M. De Vlieger, B.L. Mojet, L. Lefferts, K. Seshan, J. Catal. 292 (2012) 239-245.
    [12]
    A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A.A. Lemonidou, J.A. Lercher, J. Catal. 269 (2010) 411-420.
    [13]
    A. Ciftci, B. Peng, A. Jentys, J.A. Lercher, E.J.M. Hensen, Appl. Catal., A 431-432 (2012) 113-119.
    [14]
    C.H. Bartholomew, Appl. Catal., A 212 (2001) 17-60.
    [15]
    W. Suprun, M. Lutecki, T. Haber, H. Papp, J. Mol. Catal. Chem. 309 (2009) 71-78.
    [16]
    D.J.M. De Vlieger, D.B. Thakur, L. Lefferts, K. Seshan, ChemCatChem 4 (2012) 2068-2074.
    [17]
    A.V. Kirilin, A.V. Tokarev, L.M. Kustov, T. Salmi, J.P. Mikkola, D.Y. Murzin, Appl. Catal., A 435-436 (2012) 172-180.
    [18]
    K. Takanabe, K. Aika, K. Seshan, L. Lefferts, Chem. Eng. J. 120 (2006) 133-137.
    [19]
    B. Matas Guell, I.M.T.D. Silva, K. Seshan, L. Lefferts, Appl. Catal., B 88 (2009) 59-65.
    [20]
    P. Azadi, R. Farnood, Int. J. Hydrogen Energy 36 (2011) 9529-9541.
    [21]
    A.L. Jongerius, J.R. Copeland, G.S. Foo, J.P. Hofmann, P.C.A. Bruijnincx, C. Sievers, B.M. Weckhuysen, ACS Catal. 3 (2013) 464-473.
    [22]
    R.M. Ravenelle, J.R. Copeland, A.H. Van Pelt, J.C. Crittenden, C. Sievers, Top. Catal. 55 (2012) 162-174.
    [23]
    Y. Guo, S.Z. Wang, D.H. Xu, Y.M. Gong, H.H. Ma, X.Y. Tang, Renew. Sustainable Energy Rev. 14 (2010) 334-343.
    [24]
    P.E. Savage, Catal. Today 62 (2000) 167-173.
    [25]
    A.J. Byrd, R.B. Gupta, Appl. Catal., A 381 (2010) 177-182.
    [26]
    A.K.K. Vikla, I. Simakova, Y. Demidova, E.G. Keim, L. Calvo, M.A. Gilarranz, S. He, K. Seshan, Appl. Catal., A 610 (2021) Article number 117963, 117961-117911.
    [27]
    K.G. Azzam, I.V. Babich, K. Seshan, L. Lefferts, J. Catal. 251 (2007) 163-171.
    [28]
    D.G. Blackmond, J.G. Goodwin, J.E. Lester, J. Catal. 78 (1982) 34-43.
    [29]
    J.W. Shabaker, G.W. Huber, R.R. Davda, R.D. Cortright, J.A. Dumesic, Catal. Lett. 88 (2003) 1-8.
    [30]
    G. Wen, Y. Xu, H. Ma, Z. Xu, Z. Tian, Int. J. Hydrogen Energy 33 (2008) 6657-6666.
    [31]
    H.D. Kim, H.J. Park, T.W. Kim, K.E. Jeong, H.J. Chae, S.Y. Jeong, C.H. Lee, C.U. Kim, Catal. Today 185 (2012) 73-80.
    [32]
    M. Stekrova, A. Rinta-Paavola, R. Karinen, Catal. Today 304 (2018) 143-152.
    [33]
    W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Green Energy Environ. (2022), https://doi.org/10.1016/j.gee.2022.07.003.
    [34]
    M.C. Ramos, A.I. Navascues, L. Garcia, R. Bilbao, Ind. Eng. Chem. Res. 46 (2007) 2399-2406.
    [35]
    K. Koichumanova, A.K.K. Vikla, R. Cortese, F. Ferrante, K. Seshan, D. Duca, L. Lefferts, Appl. Catal., B 232 (2018) 454-463.
    [36]
    A. Arandia, I. Coronado, A. Remiro, A.G. Gayubo, M. Reinikainen, Int. J. Hydrogen Energy 44 (2019) 13157-13168.
    [37]
    L.I. Godina, A.V. Kirilin, A.V. Tokarev, I.L. Simakova, D.Y. Murzin, Ind. Eng. Chem. Res. 57 (2018) 2050-2067.
    [38]
    M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, Colloids Surf. A Physicochem. Eng. Asp. 190 (2001) 261-274.
    [39]
    M.I. Zaki, M.A. Hasan, L. Pasupulety, Langmuir 17 (2001) 768-774.
    [40]
    A. Takagaki, J.C. Jung, S. Hayashi, RSC Adv. 4 (2014) 43785-43791.
    [41]
    S.H. Hakim, B.H. Shanks, J.A. Dumesic, Appl. Catal., B 142-143 (2013) 368-376.
    [42]
    A.V. Tokarev, A.V. Kirilin, E.V. Murzina, K. Eranen, L.M. Kustov, D.Y. Murzin, J.P. Mikkola, Int. J. Hydrogen Energy 35 (2010) 12642-12649.
    [43]
    D.J.M. De Vlieger, L. Lefferts, K. Seshan, Green Chem. 16 (2014) 864-874.
    [44]
    J. Ten Dam, U. Hanefeld, ChemSusChem 4 (2011) 1017-1034.
    [45]
    A. Aguirre, P.A. Kler, C.L.A. Berli, S.E. Collins, Chem. Eng. J. 243 (2014) 197-206.
    [46]
    E.M. Albuquerque, L.E.P. Borges, M.A. Fraga, J. Mol. Catal. Chem. 400 (2015) 64-70.
    [47]
    L. Li, J.R. Portela, D. Vallejo, E.F. Gloyna, Ind. Eng. Chem. Res. 38 (1999) 2599-2606.
    [48]
    V.A. Yaylayan, S. Harty-Majors, A.A. Ismail, J. Agric. Food Chem. 47 (1999) 2335-2340.
    [49]
    M.L. Barbelli, F. Pompeo, G.F. Santori, N.N. Nichio, Catal. Today 213 (2013) 58-64.
    [50]
    T.N. Pham, T. Sooknoi, S.P. Crossley, D.E. Resasco, ACS Catal. 3 (2013) 2456-2473.
    [51]
    K. Takanabe, K.I. Aika, K. Seshan, L. Lefferts, J. Catal. 227 (2004) 101-108.
    [52]
    K. Takanabe, K.-I. Aika, K. Inazu, T. Baba, K. Seshan, L. Lefferts, J. Catal. 243 (2006) 263-269.
    [53]
    Y. Wan, M. Zhuang, S. Chen, W. Hu, J. Sun, J. Lin, S. Wan, Y. Wang, ACS Catal. 7 (2017) 6038-6047.
    [54]
    Y. Nakagawa, K. Tomishige, Catal. Sci. Technol. 1 (2011) 179-190.
    [55]
    Y. Amada, S. Koso, Y. Nakagawa, K. Tomishige, ChemSusChem 3 (2010) 728-736.
    [56]
    V. Zacharopoulou, E.S. Vasiliadou, A.A. Lemonidou, ChemSusChem 11 (2018) 264-275.
    [57]
    A. Ciftci, D.a.J.M. Ligthart, E.J.M. Hensen, Appl. Catal., B 174-175 (2015) 126-135.
    [58]
    K. Lehnert, P. Claus, Catal. Commun. 9 (2008) 2543-2546.
    [59]
    M.F. Neira D'angelo, V. Ordomsky, J. Van Der Schaaf, J.C. Schouten, T.A. Nijhuis, Catal. Sci. Technol. 3 (2013) 2834-2842.
    [60]
    A. Chen, P. Chen, D. Cao, H. Lou, Int. J. Hydrogen Energy 40 (2015) 14798-14805.
    [61]
    M.A. Vannice, J. Catal. 37 (1975) 449-461.
    [62]
    J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, RSC Adv. 5 (2015) 22759-22776.
    [63]
    M.A. Vannice, C.C. Twu, J. Catal. 82 (1983) 213-222.
    [64]
    J.R.H. Ross, M.C.F. Steel, A. Zeini-Isfahani, J. Catal. 52 (1978) 280-290.
    [65]
    X. Zhao, K. Wu, W. Liao, Y. Wang, X. Hou, M. Jin, Z. Suo, H. Ge, Green Energy Environ. 4 (2019) 300-310.
    [66]
    M. Bilal, S.D. Jackson, Catal. Sci. Technol. 3 (2013) 754-766.
    [67]
    D.L. Trimm, Catal. Today 49 (1999) 3-10.
    [68]
    J.P. Lange, A. Gutsze, H.G. Karge, J. Catal. 114 (1988) 136-143.
    [69]
    J. Barbier, Appl. Catal. 23 (1986) 225-243.
    [70]
    M. Guisnet, P. Magnoux, Appl. Catal., A 212 (2001) 83-96.
    [71]
    C. Ouyang, J. Li, Y. Qu, S. Hong, S. He, Green Energy Environ. 8 (2023) 1161–1173.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return