Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Hengyuan Liu, Xingjiang Wu, Yuhao Geng, Xin Li, Jianhong Xu. Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation. Green Energy&Environment, 2024, 9(3): 544-555. doi: 10.1016/j.gee.2022.09.001
Citation: Hengyuan Liu, Xingjiang Wu, Yuhao Geng, Xin Li, Jianhong Xu. Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation. Green Energy&Environment, 2024, 9(3): 544-555. doi: 10.1016/j.gee.2022.09.001

Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation

doi: 10.1016/j.gee.2022.09.001
  • Electrocatalytic nitrogen reduction reaction (NRR) is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy, moderate reaction condition, safe operating process and harmless by-products. However, the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency. Herein, the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture. Owing to in-situ co-precipitation reaction and microfluidic manipulation, the iridium nanodots/carbon nanomaterials possess small average size, uniform dispersion, high conductivity and abundant active sites, producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity. As a result, the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h-1 cm-2 and faradic efficiency of 9.14% in KOH solution. Moreover, the high ammonia yield of 11.21 μg h-1 cm-2 and faradic efficiency of 24.30% are also achieved in H2SO4 solution. The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials, which may accelerate the progress of electrocatalytic NRR in industrialization field.

     

  • loading
  • [1]
    W. Liao, K. Xie, L. Liu, X. Wang, Y. Luo, S. Liang, F. Liu, L. Jiang, J. Energy Chem. 62 (2021) 359-366.
    [2]
    J.N. Galloway, A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, M.A. Sutton, Science 320 (2008) 889-892.
    [3]
    S. Ghavam, M. Vahdati, I.a.G. Wilson, P. Styring, Front. Energy Res. 9 (2021) 580808.
    [4]
    S. Giddey, S.P.S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 38 (2013) 14576-14594.
    [5]
    S. Giddey, S.P.S. Badwal, C. Munnings, M. Dolan, ACS Sustain. Chem. Eng. 5 (2017) 10231-10239.
    [6]
    J. Yu, B. Chang, W. Yu, X. Li, D. Wang, Z. Xu, X. Zhang, H. Liu, W. Zhou, Carbon Energy 4 (2022) 237-245.
    [7]
    S. Yang, C. Zhang, D. Rao, X. Yan, Chin. J. Catal. 43 (2022) 1139-1147.
    [8]
    Q. Zhang, B. Liu, L. Yu, Y. Bei, B. Tang, ChemCatChem 12 (2019) 334-341.
    [9]
    X. Sun, J. Liang, Q. Liu, A.A. Alshehri, Nano Res. Energy 1 (2022) .
    [10]
    Q. Liu, Y. Lin, S. Gu, Z. Cheng, L. Xie, S. Sun, L. Zhang, Y. Luo, A.A. Alshehri, M.S. Hamdy, Q. Kong, J. Wang, X. Sun, Nano Res. 15 (2022) 7134-7138.
    [11]
    J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611.
    [12]
    K.A. Brown, D.F. Harris, M.B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J.W. Peters, L.C. Seefeldt, P.W. King, Science 352 (2016) 448-450.
    [13]
    M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P.V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 6 (2015) 6731.
    [14]
    S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Nature Catal. 1 (2018) 490-500.
    [15]
    Y. Tanabe, Y. Nishibayashi, Coord. Chem. Rev. 257 (2013) 2551-2564.
    [16]
    C.J. Van Der Ham, M.T. Koper, D.G. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183-5191.
    [17]
    G. Li, H. Jang, Z. Li, J. Wang, X. Ji, M.G. Kim, X. Liu, J. Cho, Green Energy Environ. 7 (2022) 672-679.
    [18]
    D. Guo, S. Wang, J. Xu, W. Zheng, D. Wang, J. Energy Chem. 65 (2022) 448-468.
    [19]
    H. Chen, J. Liang, K. Dong, L. Yue, T. Li, Y. Luo, Z. Feng, N. Li, M.S. Hamdy, A.A. Alshehri, Y. Wang, X. Sun, Q. Liu, Inorg. Chem. Front. 9 (2022) 1514-1519.
    [20]
    M. Zhang, H. Yin, F. Jin, J. Liu, X. Ji, A. Du, W. Yang, Z. Liu, Green Energy Environ. (2022) https://doi.org/10.1016/j.gee.2022.01.010.
    [21]
    L. Zhao, X. Kuang, C. Chen, X. Sun, Z. Wang, Q. Wei, Chem. Commun. 55 (2019) 10170-10173.
    [22]
    L. Niu, L. An, X. Wang, Z. Sun, J. Energy Chem. 61 (2021) 304-318.
    [23]
    L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu, Y. Song, Y. She, H. Li, H. Xu, Green Energy Environ. 6 (2021) 538-545.
    [24]
    H. Cheng, P. Cui, F. Wang, L.X. Ding, H. Wang, Angew. Chem. Int. Ed. 58 (2019) 15541-15547.
    [25]
    Q. Liu, T. Xu, Y. Luo, Q. Kong, T. Li, S. Lu, A.A. Alshehri, K.A. Alzahrani, X. Sun, Curr. Opin. Electrochem. 29 (2021) 100766.
    [26]
    S. Li, Y. Luo, L. Yue, T. Li, Y. Wang, Q. Liu, G. Cui, F. Zhang, A.M. Asiri, X. Sun, Chem. Commun. 57 (2021) 7806-7809.
    [27]
    H. Shen, C. Choi, J. Masa, X. Li, J. Qiu, Y. Jung, Z. Sun, Chem 7 (2021) 1708-1754.
    [28]
    J. Liu, G. Wang, S. Zhou, S. Liu, G. Li, H.-G. Liao, S.-G. Sun, J. Energy Chem. 56 (2021) 186-192.
    [29]
    H. Chen, J. Liang, L. Li, B. Zheng, Z. Feng, Z. Xu, Y. Luo, Q. Liu, X. Shi, Y. Liu, S. Gao, A.M. Asiri, Y. Wang, Q. Kong, X. Sun, ACS Appl. Mater. Interfaces 13 (2021) 41715-41722.
    [30]
    H. Cheng, L.X. Ding, G.F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 30 (2018) 1803694.
    [31]
    B.H.R. Suryanto, C.S.M. Kang, D. Wang, C. Xiao, F. Zhou, L.M. Azofra, L. Cavallo, X. Zhang, D.R. Macfarlane, ACS Energy Lett. 3 (2018) 1219-1224.
    [32]
    Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang, H. Zhao, Adv. Energy Mater. 9 (2019) 1803935.
    [33]
    D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Adv. Mater. 29 (2017) 1604799.
    [34]
    Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv. Mater. 30 (2018) 1803498.
    [35]
    T. Chen, S. Liu, H. Ying, Z. Li, J. Hao, Chem. Asian J. 15 (2020) 1081-1087.
    [36]
    H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A.W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 5 (2019) 204-214.
    [37]
    M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang, J.M. Yan, Q. Jiang, Adv. Mater. 29 (2017) 1606550.
    [38]
    L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S.-Z. Qiao, ACS Catal. 9 (2019) 2902-2908.
    [39]
    P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang, A.B. Watson, P. Dong, J. Shen, M. Ye, Small 15 (2019) e1902535.
    [40]
    C. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou, Y. Li, S. Wang, Small 15 (2019) e1805029.
    [41]
    J.-T. Ren, C.-Y. Wan, T.-Y. Pei, X.-W. Lv, Z.-Y. Yuan, Appl. Catal. B Environ. 266 (2020) 118633.
    [42]
    X. Yang, K. Li, D. Cheng, W.-L. Pang, J. Lv, X. Chen, H.-Y. Zang, X.-L. Wu, H.-Q. Tan, Y.-H. Wang, Y.-G. Li, J. Mater. Chem. 6 (2018) 7762-7769.
    [43]
    H. Su, L. Chen, Y. Chen, R. Si, Y. Wu, X. Wu, Z. Geng, W. Zhang, J. Zeng, Angew. Chem. Int. Ed. 59 (2020) 20411-20416.
    [44]
    L. Zeng, X. Li, S. Chen, J. Wen, W. Huang, A. Chen, J. Mater. Chem. 8 (2020) 7339-7349.
    [45]
    Y.J. Mao, L. Wei, X.S. Zhao, Y.S. Wei, J.W. Li, T. Sheng, F.C. Zhu, N. Tian, Z.Y. Zhou, S.G. Sun, Chem. Commun. 55 (2019) 9335-9338.
    [46]
    H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S.Z. Qiao, Adv. Mater. 31 (2019) 1902709.
    [47]
    C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. Int. Ed. 57 (2018) 6073-6076.
    [48]
    Y. Liu, X. Zhu, Q. Zhang, T. Tang, Y. Zhang, L. Gu, Y. Li, J. Bao, Z. Dai, J.-S. Hu, J. Mater. Chem. 8 (2020) 8920-8926.
    [49]
    T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. Int. Ed. 58 (2019) 18449-18453.
    [50]
    X. Wang, W. Wang, M. Qiao, G. Wu, W. Chen, T. Yuan, Q. Xu, M. Chen, Y. Zhang, X. Wang, J. Wang, J. Ge, X. Hong, Y. Li, Y. Wu, Y. Li, Sci. Bull. 63 (2018) 1246-1253.
    [51]
    W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng, D. Chen, T.S. Chan, Y. Tan, Adv. Energy Mater. 10 (2020) 2001364.
    [52]
    Y. Chen, R. Guo, X. Peng, X. Wang, X. Liu, J. Ren, J. He, L. Zhuo, J. Sun, Y. Liu, Y. Wu, J. Luo, ACS Nano 14 (2020) 6938-6946.
    [53]
    E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J.K. Norskov, Phys. Chem. Chem. Phys. 14 (2012) 1235-1245.
    [54]
    B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3 (2011) 634-641.
    [55]
    M. Moses-Debusk, M. Yoon, L.F. Allard, D.R. Mullins, Z. Wu, X. Yang, G. Veith, G.M. Stocks, C.K. Narula, J. Am. Chem. Soc. 135 (2013) 12634-12645.
    [56]
    X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 46 (2013) 1740-1748.
    [57]
    Y. He, Y. Li, J. Zhang, S. Wang, D. Huang, G. Yang, X. Yi, H. Lin, X. Han, W. Hu, Y. Deng, J. Ye, Nano Energy 77 (2020) 105010.
    [58]
    S. Liang, C. Hao, Y. Shi, ChemCatChem 7 (2015) 2559-2567.
    [59]
    X. Wu, X. Zhu, H. Tao, G. Wu, J. Xu, N. Bao, Angew. Chem. Int. Ed. 60 (2021) 21295-21303.
    [60]
    X. Wu, R. Hong, J. Meng, R. Cheng, Z. Zhu, G. Wu, Q. Li, C.F. Wang, S. Chen, Angew. Chem. Int. Ed. 58 (2019) 13556-13564.
    [61]
    X. Wu, Y. Xu, Y. Hu, G. Wu, H. Cheng, Q. Yu, K. Zhang, W. Chen, S. Chen, Nat. Commun. 9 (2018) 4573.
    [62]
    Z. Wang, Y. Lu, ACS Appl. Mater. Interfaces 11 (2019) 13225-13233.
    [63]
    Y. Xi, Y. Lu, Chem. Eng. J. 405 (2021) 126688.
    [64]
    B.L. Sheets, G.G. Botte, Chem. Commun. 54 (2018) 4250-4253.
    [65]
    Y. Luo, G.-F. Chen, L. Ding, X. Chen, L.-X. Ding, H. Wang, Joule 3 (2019) 279-289.
    [66]
    C.U. Okoli, K.A. Kuttiyiel, J. Cole, J. Mccutchen, H. Tawfik, R.R. Adzic, D. Mahajan, Ultrason. Sonochem. 41 (2018) 427-434.
    [67]
    R.L. Cruz Gomes Da Silva, H.F. Oliveira Da Silva, L.H. Da Silva Gasparotto, L. Caseli, J. Colloid Interface Sci. 512 (2018) 792-800.
    [68]
    M. Li, Z. Zhao, Z. Xia, M. Luo, Q. Zhang, Y. Qin, L. Tao, K. Yin, Y. Chao, L. Gu, W. Yang, Y. Yu, G. Lu, S. Guo, Angew. Chem. Int. Ed. 60 (2021) 8243-8250.
    [69]
    N.Q. Tran, T.A. Le, H. Kim, Y. Hong, Y. Cho, G.H. Park, H. Kim, M. Kim, J. Lee, W.-S. Yoon, H. Lee, ACS Sustain. Chem. Eng. 7 (2019) 16640-16650.
    [70]
    J. Cheng, J. Yang, S. Kitano, G. Juhasz, M. Higashi, M. Sadakiyo, K. Kato, S. Yoshioka, T. Sugiyama, M. Yamauchi, N. Nakashima, ACS Catal. 9 (2019) 6974-6986.
    [71]
    R. Jin, M. Peng, A. Li, Y. Deng, Z. Jia, F. Huang, Y. Ling, F. Yang, H. Fu, J. Xie, X. Han, D. Xiao, Z. Jiang, H. Liu, D. Ma, J. Am. Chem. Soc. 141 (2019) 18921-18925.
    [72]
    B.H.R. Suryanto, D. Wang, L.M. Azofra, M. Harb, L. Cavallo, R. Jalili, D.R.G. Mitchell, M. Chatti, D.R. Macfarlane, ACS Energy Lett. 4 (2018) 430-435.
    [73]
    A. Wu, J. Yang, B. Xu, X.-Y. Wu, Y. Wang, X. Lv, Y. Ma, A. Xu, J. Zheng, Q. Tan, Y. Peng, Z. Qi, H. Qi, J. Li, Y. Wang, J. Harding, X. Tu, A. Wang, J. Yan, X. Li, Appl. Catal. B Environ. 299 (2021) 120667.
    [74]
    M. Nazemi, S.R. Panikkanvalappil, M.A. El-Sayed, Nano Energy 49 (2018) 316-323.
    [75]
    L. Hu, A. Khaniya, J. Wang, G. Chen, W.E. Kaden, X. Feng, ACS Catal. 8 (2018) 9312-9319.
    [76]
    Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li, X. Sun, ACS Catal. 8 (2018) 8540-8544.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return