Citation: | Mengyuan Liu, Puhua Sun, Guangyu Zhang, Xin Jin, Chaohe Yang, Honghong Shan. Synthesizing active and durable cubic ceria catalysts (<6 nm) for fast dehydrogenation of bio-polyols to carboxylic acids coproducing green H2. Green Energy&Environment, 2024, 9(3): 529-543. doi: 10.1016/j.gee.2022.08.008 |
[1] |
Marcel Bruchez Jr., M. M., Peter Gin, Shimon Weiss,; Alivisatos, A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 2013-2015.
|
[2] |
Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Upadhyay, S.; Parkash, O., A brief review on ceria based solid electrolytes for solid oxide fuel cells. Journal of Alloys and Compounds 2019, 781, 984-1005.
|
[3] |
Campbell, C. T.; Peden, a. C. H. F., Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713-714.
|
[4] |
Zheng, X.; Li, Y.; Zhang, L.; Shen, L.; Xiao, Y.; Zhang, Y.; Au, C.; Jiang, L., Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental 2019, 252, 98-110.
|
[5] |
Agarwal, S.; Lefferts, L.; Mojet, B. L.; Ligthart, D. A.; Hensen, E. J.; Mitchell, D. R.; Erasmus, W. J.; Anderson, B. G.; Olivier, E. J.; Neethling, J. H.; Datye, A. K., Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. ChemSusChem 2013, 6 (10), 1898-1906.
|
[6] |
Mei, J.; Ke, Y.; Yu, Z.; Hu, X.; Qu, Z.; Yan, N., Morphology-dependent properties of Co 3 O 4/CeO 2 catalysts for low temperature dibromomethane (CH 2 Br 2) oxidation. Chemical Engineering Journal 2017, 320, 124-134.
|
[7] |
Liu, Z.; Li, J.; Buettner, M.; Ranganathan, R. V.; Uddi, M.; Wang, R., Metal-Support Interactions in CeO2- and SiO2-Supported Cobalt Catalysts: Effect of Support Morphology, Reducibility, and Interfacial Configuration. ACS applied materials & interfaces 2019, 11 (18), 17035-17049.
|
[8] |
Haoxin Mai; Lingdong Sun; Yawen Zhang; Rui Si; Wei Feng; Hongpeng Zhang; Haichao Liu; Yan, C., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. Journal of Physical Chemistry B 2005, 109, 24380-24385.
|
[9] |
Shi, J.; Wang, H.; Liu, Y.; Ren, X.; Sun, H.; Lv, B., Rapid microwave-assisted hydrothermal synthesis of CeO2 octahedra with mixed valence states and their catalytic activity for thermal decomposition of ammonium perchlorate. Inorganic Chemistry Frontiers 2019, 6 (7), 1735-1743.
|
[10] |
Sun, C.; Li, H.; Zhang, H.; Wang, Z.; Chen, L., Controlled Synthesis of CeO2 Nanorods by a Solvothermal Method. Nanotechnology 2005, 16 (9), 1454.
|
[11] |
Babu, S.; Thanneeru, R.; Inerbaev, T.; Day, R.; Masunov, A. E.; Schulte, A.; Seal, S., Dopant-mediated oxygen vacancy tuning in ceria nanoparticles. Nanotechnology 2009, 20 (8), 085713.
|
[12] |
Zhang, X. Y.; You, R.; Li, D.; Cao, T.; Huang, W. X., Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO2 Catalysis in Propane Oxidation Reactions. Acs Applied Materials & Interfaces 2017, 9 (41), 35897-35907.
|
[13] |
Chang, S. J.; Li, M.; Hua, Q.; Zhang, L. J.; Ma, Y. S.; Ye, B. J.; Huang, W. X., Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. Journal of Catalysis 2012, 293, 195-204.
|
[14] |
Gao, Y. X.; Wang, W. D.; Chang, S. J.; Huang, W. X., Morphology Effect of CeO2 Support in the Preparation, Metal-Support Interaction, and Catalytic Performance of Pt/CeO2 Catalysts. Chemcatchem 2013, 5 (12), 3610-3620.
|
[15] |
Zhan, Y.; Liu, Y.; Peng, X.; Zhao, W.; Zhang, Y.; Wang, X.; Au, C.-t.; Jiang, L., Molecular-level understanding of reaction path optimization as a function of shape concerning the metal-support interaction effect of Co/CeO2 on water-gas shift catalysis. Catalysis Science & Technology 2019, 9 (18), 4928-4937.
|
[16] |
Si, R.; Flytzani-Stephanopoulos, M., Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47 (15), 2884-2887.
|
[17] |
Jin, X.; Yin, B.; Xia, Q.; Fang, T.; Shen, J.; Kuang, L.; Yang, C., Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges. ChemSusChem 2019, 12 (1), 71-92.
|
[18] |
Kim, S.; Kwon, E. E.; Kim, Y. T.; Jung, S.; Kim, H. J.; Huber, G. W.; Lee, J., Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chemistry 2019, 21, 3715-3743.
|
[19] |
Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y., Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. Journal of Energy Chemistry 2019, 32, 138-151.
|
[20] |
Tang, Z.; Liu, P.; Cao, H.; Bals, S.; Heeres, H. J.; Pescarmona, P. P., Pt/ZrO2 Prepared by Atomic Trapping: An Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene. ACS Catalysis 2019, 9 (11), 9953-9963.
|
[21] |
Khanna, A.; Sudha, Y. S.; Pillai, S.; Rath, S. S., Molecular modeling studies of poly lactic acid initiation mechanisms. Journal of molecular modeling 2008, 14 (5), 367-374.
|
[22] |
Zhang, G.; Jin, X.; Guan, Y.; Yin, B.; Chen, X.; Liu, Y.; Feng, X.; Shan, H.; Yang, C., Toward Selective Dehydrogenation of Glycerol to Lactic Acid over Bimetallic Pt-Co/CeOx Catalysts. Industrial & Engineering Chemistry Research 2019, 58, 14548-14558.
|
[23] |
Yan, H.; Yao, S.; Yin, B.; Liang, W.; Jin, X.; Feng, X.; Liu, Y.; Chen, X.; Yang, C., Synergistic effects of bimetallic PtRu/MCM-41 nanocatalysts for glycerol oxidation in base-free medium: Structure and electronic coupling dependent activity. Applied Catalysis B: Environmental 2019, 259, 118070.
|
[24] |
Yan, H.; Yao, S.; Liang, W.; Feng, X.; Jin, X.; Liu, Y.; Chen, X.; Yang, C., Selective oxidation of glycerol to carboxylic acids on Pt(111) in base-free medium: A periodic density functional theory investigation. Applied Surface Science 2019, 497, 143661.
|
[25] |
Yan, H.; Qin, H.; Feng, X.; Jin, X.; Liang, W.; Sheng, N.; Zhu, C.; Wang, H.; Yin, B.; Liu, Y.; Chen, X.; Yang, C., Synergistic Pt/MgO/SBA-15 nanocatalysts for glycerol oxidation in base-free medium: Catalyst design and mechanistic study. Journal of Catalysis 2019, 370, 434-446.
|
[26] |
Tang, Z.; Cao, H.; Tao, Y.; Heeres, H. J.; Pescarmona, P. P., Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. Applied Catalysis B: Environmental 2020, 263, 118273.
|
[27] |
Razali, N.; Abdullah, A. Z., Production of lactic acid from glycerol via chemical conversion using solid catalyst: A review. Applied Catalysis A: General 2017, 543, 234-246.
|
[28] |
Purushothaman, R. K. P.; van Haveren, J.; van Es, D. S.; Melian-Cabrera, I.; Meeldijk, J. D.; Heeres, H. J., An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Applied Catalysis B: Environmental 2014, 147, 92-100.
|
[29] |
Cho, H. J.; Chang, C.-C.; Fan, W., Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst. Green Chem. 2014, 16 (7), 3428-3433.
|
[30] |
Jin, X.; Zeng, C.; Yan, W.; Zhao, M.; Bobba, P.; Shi, H.; Thapa, P. S.; Subramaniam, B.; Chaudhari, R. V., Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General 2017, 534, 46-57.
|
[31] |
Cui, Y.; Dai, W.-L., Support morphology and crystal plane effect of Cu/CeO2 nanomaterial on the physicochemical and catalytic properties for carbonate hydrogenation. Catalysis Science & Technology 2016, 6 (21), 7752-7762.
|
[32] |
Hao-Xin, M.; Ling-Dong, S.; Ya-Wen, Z.; Rui, S.; Wei, F.; Hong-Peng, Z.; Hai-Chao, L.; Chun-Hua, Y., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. Journal of Physical Chemistry B 2005, 109 (51), 24380-24385.
|
[33] |
Penn, R. L.; Banfield, a. J. F., Imperfect Oriented Attachment dislocation generation in defect free nanocrystals. Science 1998, 281, 969-971.
|
[34] |
Rafael O. Da Silva; Ricardo H. Goncalves; Daniel G. Stroppa; Ramirez, A. J.; Leite, a. E. R., Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment. Nanoscale 2011, 3, 1910-1916.
|
[35] |
E. Y. H. Teo; M. Lin; Z. Y. Fu; S. C. Ng; J. P. Y. Tan; Tan, a. H. R., In Situ Structural Analysis on the Growth Mechanism Pathways of hydrothermal synthesized ceo2 nanocrystals. ECS Transactions 2013, 50, 63-74.
|
[36] |
Thomas W. Hansen; Andrew T. Delariva; Sivakumar R. Challa; Datye, a. A. K., Sintering of Catalytic Nanoparticles Particle migration or ostwald ripening. Accounts of Chemical Research 2013, 46, 1720-1730.
|
[37] |
Li, Y. X.; Zhou, X. Z.; Wang, Y.; You, X. Z., Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide. Materials Letters 2004, 58 (1-2), 245-249.
|
[38] |
Si, R.; Zhang, Y.-W.; You, L.-P.; Yan, a. C.-H., Self-Organized Monolayer of Nanosized Ceria Colloids Stabilized by Poly(vinylpyrrolidone). J. Phys. Chem. B 2006, 110, 5994-6000.
|
[39] |
Hongyan Liang; Huaixin Yang; Wenzhong Wang; Jianqi Li; Xu, a. H., High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals. J. Am. Chem. Soc. 2009, 131, 6068-6069.
|
[40] |
Li, S.; Zhu, H.; Qin, Z.; Wang, G.; Zhang, Y.; Wu, Z.; Li, Z.; Chen, G.; Dong, W.; Wu, Z.; Zheng, L.; Zhang, J.; Hu, T.; Wang, J., Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation. Applied Catalysis B: Environmental 2014, 144, 498-506.
|
[41] |
Soumitra Kar, C. P., Swadeshmukul Santra, Direct Room Temperature Synthesis of Valence State Engineered Ultra-Small Ceria Nanoparticles Investigation on the Role of Ethylenediamine as a Capping Agent. J. Phys. Chem. C 2009, 113, 4862-4867.
|
[42] |
Weber, W. H.; Hass, K. C.; McBride, J. R., Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B 1993, 48 (1), 178-185.
|
[43] |
Luo, M.-F.; Yan, Z.-L.; Jin, L.-Y., Structure and redox properties of CexPr1-xO2-δ mixed oxides and their catalytic activities for CO, CH3OH and CH4 combustion. Journal of Molecular Catalysis A: Chemical 2006, 260 (1-2), 157-162.
|
[44] |
Zhi-Ying Pu, J.-Q. L., Meng-Fei Luo, and Yun-Long Xie, Study of Oxygen Vacancies in Ce0.9Pr0.1O2-δ Solid Solution by in Situ X-ray Diffraction and in Situ Raman Spectroscopy. Journal of Physical Chemistry C 2007, 111, 18695.
|
[45] |
Yinghui Zhou; Justin M. Perket; Zhou, J., Growth of Pt Nanoparticles on Reducible CeO2(111) Thin Films Effect of Nanostructures and Redox Properties of Ceria.pdf. J. Phys. Chem. C 2010, 114, 11853-11860.
|
[46] |
Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F., A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. Journal of the American Chemical Society 2012, 134 (21), 8968-8974.
|
[47] |
Zhang, G.; Jin, X.; Li, X.; Meng, K.; Wang, J.; Zhang, Q.; Chen, X.; Liu, Y.; Feng, X.; Yang, C., Electronic coupling enhanced PtCo/CeO2 hybrids as highly active catalysts for the key dehydrogenation step in conversion of bio-derived polyols. Chemical Engineering Science 2021, 229, 116060.
|
[48] |
Liu, D.; Wang, C.; Yu, Y.; Zhao, B.-H.; Wang, W.; Du, Y.; Zhang, B., Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides. Chem 2019, 5 (2), 376-389.
|
[49] |
An, J.; Wang, Y.; Lu, J.; Zhang, J.; Zhang, Z.; Xu, S.; Liu, X.; Zhang, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski, R. E.; Fornasiero, P.; Wang, F., Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid-Base Pair. Journal of the American Chemical Society 2018, 140 (11), 4172-4181.
|
[50] |
Vecchietti, J.; Bonivardi, A.; Xu, W.; Stacchiola, D.; Delgado, J. J.; Calatayud, M.; Collins, S. E., Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts. ACS Catalysis 2014, 4 (6), 2088-2096.
|
[51] |
Li, D.; Li, K.; Xu, R.; Zhu, X.; Wei, Y.; Tian, D.; Cheng, X.; Wang, H., Enhanced CH4 and CO Oxidation over Ce1- xFe xO2-delta Hybrid Catalysts by Tuning the Lattice Distortion and the State of Surface Iron Species. ACS applied materials & interfaces 2019, 11 (21), 19227-19241.
|
[52] |
Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews 1996, 38 (4), 439-520.
|
[53] |
Chengzhou Zhu; Shaofang Fu; Dan Du; Lin, a. Y., Facilely Tuning Porous NiCo2O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting.pdf. Chemistry A European Journal 2016, 22, 4000-4007.
|
[54] |
Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Muller, J.; Spiecker, E.; Schmuki, P., Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14 (6), 3309-3313.
|
[55] |
Wu, R.; Zhang, J.; Shi, Y.; Liu, D.; Zhang, B., Metallic WO2-Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (22), 6983-6986.
|
[56] |
Song, F.; Schenk, K.; Hu, X., A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6nanocubes. Energy & Environmental Science 2016, 9 (2), 473-477.
|
[57] |
Zhao, W.; Zhao, W.; Zhu, G.; Lin, T.; Xu, F.; Huang, F., Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton transactions 2016, 45 (9), 3888-3894.
|
[58] |
Chen, X.; Qi, M.-Y.; Li, Y.-H.; Tang, Z.-R.; Xu, Y.-J., Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies. Chinese Journal of Catalysis 2021, 42 (11), 2020-2026.
|
[59] |
Hao, L.; Huang, H.; Zhang, Y.; Ma, T., Oxygen Vacant Semiconductor Photocatalysts. Advanced Functional Materials 2021, 31 (25).
|
[60] |
Hou, T. T.; Xiao, Y.; Cui, P. X.; Huang, Y. N.; Tan, X. P.; Zheng, X. S.; Zou, Y.; Liu, C. X.; Zhu, W. K.; Liang, S. Q.; Wang, L. B., Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation. Advanced Energy Materials 2019, 9 (43).
|