Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Mengyuan Liu, Puhua Sun, Guangyu Zhang, Xin Jin, Chaohe Yang, Honghong Shan. Synthesizing active and durable cubic ceria catalysts (<6 nm) for fast dehydrogenation of bio-polyols to carboxylic acids coproducing green H2. Green Energy&Environment, 2024, 9(3): 529-543. doi: 10.1016/j.gee.2022.08.008
Citation: Mengyuan Liu, Puhua Sun, Guangyu Zhang, Xin Jin, Chaohe Yang, Honghong Shan. Synthesizing active and durable cubic ceria catalysts (<6 nm) for fast dehydrogenation of bio-polyols to carboxylic acids coproducing green H2. Green Energy&Environment, 2024, 9(3): 529-543. doi: 10.1016/j.gee.2022.08.008

Synthesizing active and durable cubic ceria catalysts (<6 nm) for fast dehydrogenation of bio-polyols to carboxylic acids coproducing green H2

doi: 10.1016/j.gee.2022.08.008
  • Dehydrogenation is considered as one of the most important industrial applications for renewable energy. Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area. Large particle size (>20 nm) and less surface defects, however, hinder further application of ceria materials. Herein, an alternative strategy involving lactic acid (LA) assisted hydrothermal method was developed to synthesize active, selective and durable cubic ceria of <6 nm for dehydrogenation reactions. Detailed studies of growth mechanism revealed that, the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors. Carboxyl groups determine the cubic shape and particle size, while hydroxyl groups promote compositional transformation of ceria precursors into CeO2 phases. Moreover, enhanced oxygen vacancies (Vö) on the surface of CeO2 were obtained owing to continuous removal of O species under reductive atmosphere. Cubic CeO2 catalysts synthesized by the LA-assisted method, immobilized with bimetallic PtCo clusters, exhibit a record high activity (TOF: 29,241 h-1) and Vö-dependent synergism for dehydrogenation of bio-derived polyols at 200 °C. We also found that quenching Vö defects at air atmosphere causes activity loss of PtCo/CeO2 catalysts. To regenerate Vö defects, a simple strategy was developed by irradiating deactivated catalysts using hernia lamp. The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.

     

  • loading
  • [1]
    Marcel Bruchez Jr., M. M., Peter Gin, Shimon Weiss,; Alivisatos, A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 2013-2015.
    [2]
    Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Upadhyay, S.; Parkash, O., A brief review on ceria based solid electrolytes for solid oxide fuel cells. Journal of Alloys and Compounds 2019, 781, 984-1005.
    [3]
    Campbell, C. T.; Peden, a. C. H. F., Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713-714.
    [4]
    Zheng, X.; Li, Y.; Zhang, L.; Shen, L.; Xiao, Y.; Zhang, Y.; Au, C.; Jiang, L., Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental 2019, 252, 98-110.
    [5]
    Agarwal, S.; Lefferts, L.; Mojet, B. L.; Ligthart, D. A.; Hensen, E. J.; Mitchell, D. R.; Erasmus, W. J.; Anderson, B. G.; Olivier, E. J.; Neethling, J. H.; Datye, A. K., Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. ChemSusChem 2013, 6 (10), 1898-1906.
    [6]
    Mei, J.; Ke, Y.; Yu, Z.; Hu, X.; Qu, Z.; Yan, N., Morphology-dependent properties of Co 3 O 4/CeO 2 catalysts for low temperature dibromomethane (CH 2 Br 2) oxidation. Chemical Engineering Journal 2017, 320, 124-134.
    [7]
    Liu, Z.; Li, J.; Buettner, M.; Ranganathan, R. V.; Uddi, M.; Wang, R., Metal-Support Interactions in CeO2- and SiO2-Supported Cobalt Catalysts: Effect of Support Morphology, Reducibility, and Interfacial Configuration. ACS applied materials & interfaces 2019, 11 (18), 17035-17049.
    [8]
    Haoxin Mai; Lingdong Sun; Yawen Zhang; Rui Si; Wei Feng; Hongpeng Zhang; Haichao Liu; Yan, C., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. Journal of Physical Chemistry B 2005, 109, 24380-24385.
    [9]
    Shi, J.; Wang, H.; Liu, Y.; Ren, X.; Sun, H.; Lv, B., Rapid microwave-assisted hydrothermal synthesis of CeO2 octahedra with mixed valence states and their catalytic activity for thermal decomposition of ammonium perchlorate. Inorganic Chemistry Frontiers 2019, 6 (7), 1735-1743.
    [10]
    Sun, C.; Li, H.; Zhang, H.; Wang, Z.; Chen, L., Controlled Synthesis of CeO2 Nanorods by a Solvothermal Method. Nanotechnology 2005, 16 (9), 1454.
    [11]
    Babu, S.; Thanneeru, R.; Inerbaev, T.; Day, R.; Masunov, A. E.; Schulte, A.; Seal, S., Dopant-mediated oxygen vacancy tuning in ceria nanoparticles. Nanotechnology 2009, 20 (8), 085713.
    [12]
    Zhang, X. Y.; You, R.; Li, D.; Cao, T.; Huang, W. X., Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO2 Catalysis in Propane Oxidation Reactions. Acs Applied Materials & Interfaces 2017, 9 (41), 35897-35907.
    [13]
    Chang, S. J.; Li, M.; Hua, Q.; Zhang, L. J.; Ma, Y. S.; Ye, B. J.; Huang, W. X., Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. Journal of Catalysis 2012, 293, 195-204.
    [14]
    Gao, Y. X.; Wang, W. D.; Chang, S. J.; Huang, W. X., Morphology Effect of CeO2 Support in the Preparation, Metal-Support Interaction, and Catalytic Performance of Pt/CeO2 Catalysts. Chemcatchem 2013, 5 (12), 3610-3620.
    [15]
    Zhan, Y.; Liu, Y.; Peng, X.; Zhao, W.; Zhang, Y.; Wang, X.; Au, C.-t.; Jiang, L., Molecular-level understanding of reaction path optimization as a function of shape concerning the metal-support interaction effect of Co/CeO2 on water-gas shift catalysis. Catalysis Science & Technology 2019, 9 (18), 4928-4937.
    [16]
    Si, R.; Flytzani-Stephanopoulos, M., Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47 (15), 2884-2887.
    [17]
    Jin, X.; Yin, B.; Xia, Q.; Fang, T.; Shen, J.; Kuang, L.; Yang, C., Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges. ChemSusChem 2019, 12 (1), 71-92.
    [18]
    Kim, S.; Kwon, E. E.; Kim, Y. T.; Jung, S.; Kim, H. J.; Huber, G. W.; Lee, J., Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chemistry 2019, 21, 3715-3743.
    [19]
    Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y., Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. Journal of Energy Chemistry 2019, 32, 138-151.
    [20]
    Tang, Z.; Liu, P.; Cao, H.; Bals, S.; Heeres, H. J.; Pescarmona, P. P., Pt/ZrO2 Prepared by Atomic Trapping: An Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene. ACS Catalysis 2019, 9 (11), 9953-9963.
    [21]
    Khanna, A.; Sudha, Y. S.; Pillai, S.; Rath, S. S., Molecular modeling studies of poly lactic acid initiation mechanisms. Journal of molecular modeling 2008, 14 (5), 367-374.
    [22]
    Zhang, G.; Jin, X.; Guan, Y.; Yin, B.; Chen, X.; Liu, Y.; Feng, X.; Shan, H.; Yang, C., Toward Selective Dehydrogenation of Glycerol to Lactic Acid over Bimetallic Pt-Co/CeOx Catalysts. Industrial & Engineering Chemistry Research 2019, 58, 14548-14558.
    [23]
    Yan, H.; Yao, S.; Yin, B.; Liang, W.; Jin, X.; Feng, X.; Liu, Y.; Chen, X.; Yang, C., Synergistic effects of bimetallic PtRu/MCM-41 nanocatalysts for glycerol oxidation in base-free medium: Structure and electronic coupling dependent activity. Applied Catalysis B: Environmental 2019, 259, 118070.
    [24]
    Yan, H.; Yao, S.; Liang, W.; Feng, X.; Jin, X.; Liu, Y.; Chen, X.; Yang, C., Selective oxidation of glycerol to carboxylic acids on Pt(111) in base-free medium: A periodic density functional theory investigation. Applied Surface Science 2019, 497, 143661.
    [25]
    Yan, H.; Qin, H.; Feng, X.; Jin, X.; Liang, W.; Sheng, N.; Zhu, C.; Wang, H.; Yin, B.; Liu, Y.; Chen, X.; Yang, C., Synergistic Pt/MgO/SBA-15 nanocatalysts for glycerol oxidation in base-free medium: Catalyst design and mechanistic study. Journal of Catalysis 2019, 370, 434-446.
    [26]
    Tang, Z.; Cao, H.; Tao, Y.; Heeres, H. J.; Pescarmona, P. P., Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. Applied Catalysis B: Environmental 2020, 263, 118273.
    [27]
    Razali, N.; Abdullah, A. Z., Production of lactic acid from glycerol via chemical conversion using solid catalyst: A review. Applied Catalysis A: General 2017, 543, 234-246.
    [28]
    Purushothaman, R. K. P.; van Haveren, J.; van Es, D. S.; Melian-Cabrera, I.; Meeldijk, J. D.; Heeres, H. J., An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Applied Catalysis B: Environmental 2014, 147, 92-100.
    [29]
    Cho, H. J.; Chang, C.-C.; Fan, W., Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst. Green Chem. 2014, 16 (7), 3428-3433.
    [30]
    Jin, X.; Zeng, C.; Yan, W.; Zhao, M.; Bobba, P.; Shi, H.; Thapa, P. S.; Subramaniam, B.; Chaudhari, R. V., Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General 2017, 534, 46-57.
    [31]
    Cui, Y.; Dai, W.-L., Support morphology and crystal plane effect of Cu/CeO2 nanomaterial on the physicochemical and catalytic properties for carbonate hydrogenation. Catalysis Science & Technology 2016, 6 (21), 7752-7762.
    [32]
    Hao-Xin, M.; Ling-Dong, S.; Ya-Wen, Z.; Rui, S.; Wei, F.; Hong-Peng, Z.; Hai-Chao, L.; Chun-Hua, Y., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. Journal of Physical Chemistry B 2005, 109 (51), 24380-24385.
    [33]
    Penn, R. L.; Banfield, a. J. F., Imperfect Oriented Attachment dislocation generation in defect free nanocrystals. Science 1998, 281, 969-971.
    [34]
    Rafael O. Da Silva; Ricardo H. Goncalves; Daniel G. Stroppa; Ramirez, A. J.; Leite, a. E. R., Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment. Nanoscale 2011, 3, 1910-1916.
    [35]
    E. Y. H. Teo; M. Lin; Z. Y. Fu; S. C. Ng; J. P. Y. Tan; Tan, a. H. R., In Situ Structural Analysis on the Growth Mechanism Pathways of hydrothermal synthesized ceo2 nanocrystals. ECS Transactions 2013, 50, 63-74.
    [36]
    Thomas W. Hansen; Andrew T. Delariva; Sivakumar R. Challa; Datye, a. A. K., Sintering of Catalytic Nanoparticles Particle migration or ostwald ripening. Accounts of Chemical Research 2013, 46, 1720-1730.
    [37]
    Li, Y. X.; Zhou, X. Z.; Wang, Y.; You, X. Z., Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide. Materials Letters 2004, 58 (1-2), 245-249.
    [38]
    Si, R.; Zhang, Y.-W.; You, L.-P.; Yan, a. C.-H., Self-Organized Monolayer of Nanosized Ceria Colloids Stabilized by Poly(vinylpyrrolidone). J. Phys. Chem. B 2006, 110, 5994-6000.
    [39]
    Hongyan Liang; Huaixin Yang; Wenzhong Wang; Jianqi Li; Xu, a. H., High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals. J. Am. Chem. Soc. 2009, 131, 6068-6069.
    [40]
    Li, S.; Zhu, H.; Qin, Z.; Wang, G.; Zhang, Y.; Wu, Z.; Li, Z.; Chen, G.; Dong, W.; Wu, Z.; Zheng, L.; Zhang, J.; Hu, T.; Wang, J., Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation. Applied Catalysis B: Environmental 2014, 144, 498-506.
    [41]
    Soumitra Kar, C. P., Swadeshmukul Santra, Direct Room Temperature Synthesis of Valence State Engineered Ultra-Small Ceria Nanoparticles Investigation on the Role of Ethylenediamine as a Capping Agent. J. Phys. Chem. C 2009, 113, 4862-4867.
    [42]
    Weber, W. H.; Hass, K. C.; McBride, J. R., Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B 1993, 48 (1), 178-185.
    [43]
    Luo, M.-F.; Yan, Z.-L.; Jin, L.-Y., Structure and redox properties of CexPr1-xO2-δ mixed oxides and their catalytic activities for CO, CH3OH and CH4 combustion. Journal of Molecular Catalysis A: Chemical 2006, 260 (1-2), 157-162.
    [44]
    Zhi-Ying Pu, J.-Q. L., Meng-Fei Luo, and Yun-Long Xie, Study of Oxygen Vacancies in Ce0.9Pr0.1O2-δ Solid Solution by in Situ X-ray Diffraction and in Situ Raman Spectroscopy. Journal of Physical Chemistry C 2007, 111, 18695.
    [45]
    Yinghui Zhou; Justin M. Perket; Zhou, J., Growth of Pt Nanoparticles on Reducible CeO2(111) Thin Films Effect of Nanostructures and Redox Properties of Ceria.pdf. J. Phys. Chem. C 2010, 114, 11853-11860.
    [46]
    Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F., A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. Journal of the American Chemical Society 2012, 134 (21), 8968-8974.
    [47]
    Zhang, G.; Jin, X.; Li, X.; Meng, K.; Wang, J.; Zhang, Q.; Chen, X.; Liu, Y.; Feng, X.; Yang, C., Electronic coupling enhanced PtCo/CeO2 hybrids as highly active catalysts for the key dehydrogenation step in conversion of bio-derived polyols. Chemical Engineering Science 2021, 229, 116060.
    [48]
    Liu, D.; Wang, C.; Yu, Y.; Zhao, B.-H.; Wang, W.; Du, Y.; Zhang, B., Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides. Chem 2019, 5 (2), 376-389.
    [49]
    An, J.; Wang, Y.; Lu, J.; Zhang, J.; Zhang, Z.; Xu, S.; Liu, X.; Zhang, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski, R. E.; Fornasiero, P.; Wang, F., Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid-Base Pair. Journal of the American Chemical Society 2018, 140 (11), 4172-4181.
    [50]
    Vecchietti, J.; Bonivardi, A.; Xu, W.; Stacchiola, D.; Delgado, J. J.; Calatayud, M.; Collins, S. E., Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts. ACS Catalysis 2014, 4 (6), 2088-2096.
    [51]
    Li, D.; Li, K.; Xu, R.; Zhu, X.; Wei, Y.; Tian, D.; Cheng, X.; Wang, H., Enhanced CH4 and CO Oxidation over Ce1- xFe xO2-delta Hybrid Catalysts by Tuning the Lattice Distortion and the State of Surface Iron Species. ACS applied materials & interfaces 2019, 11 (21), 19227-19241.
    [52]
    Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews 1996, 38 (4), 439-520.
    [53]
    Chengzhou Zhu; Shaofang Fu; Dan Du; Lin, a. Y., Facilely Tuning Porous NiCo2O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting.pdf. Chemistry A European Journal 2016, 22, 4000-4007.
    [54]
    Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Muller, J.; Spiecker, E.; Schmuki, P., Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14 (6), 3309-3313.
    [55]
    Wu, R.; Zhang, J.; Shi, Y.; Liu, D.; Zhang, B., Metallic WO2-Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society 2015, 137 (22), 6983-6986.
    [56]
    Song, F.; Schenk, K.; Hu, X., A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6nanocubes. Energy & Environmental Science 2016, 9 (2), 473-477.
    [57]
    Zhao, W.; Zhao, W.; Zhu, G.; Lin, T.; Xu, F.; Huang, F., Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton transactions 2016, 45 (9), 3888-3894.
    [58]
    Chen, X.; Qi, M.-Y.; Li, Y.-H.; Tang, Z.-R.; Xu, Y.-J., Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies. Chinese Journal of Catalysis 2021, 42 (11), 2020-2026.
    [59]
    Hao, L.; Huang, H.; Zhang, Y.; Ma, T., Oxygen Vacant Semiconductor Photocatalysts. Advanced Functional Materials 2021, 31 (25).
    [60]
    Hou, T. T.; Xiao, Y.; Cui, P. X.; Huang, Y. N.; Tan, X. P.; Zheng, X. S.; Zou, Y.; Liu, C. X.; Zhu, W. K.; Liang, S. Q.; Wang, L. B., Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation. Advanced Energy Materials 2019, 9 (43).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return