Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Yang Zhou, Lice Yu, Jinfa Chang, Ligang Feng, Jiujun Zhang. Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system. Green Energy&Environment, 2024, 9(4): 758-770. doi: 10.1016/j.gee.2022.08.007
Citation: Yang Zhou, Lice Yu, Jinfa Chang, Ligang Feng, Jiujun Zhang. Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system. Green Energy&Environment, 2024, 9(4): 758-770. doi: 10.1016/j.gee.2022.08.007

Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system

doi: 10.1016/j.gee.2022.08.007
  • Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique, and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions. Herein, the efficient catalytic promotion effect of a novel catalyst promoter, CoTe, on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation. Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H* that enhances the catalytic ability for methanol and ethanol electrolysis. Moreover, the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique. The high catalytic kinetics and stability, as well as the promotion effect, were also carefully discussed. Specifically, 71.9% and 75.5% of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation; and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm-2. In the two-electrode system for alcohol fuels electrolysis, using the optimal Pt–CoTe/C catalyst as bi-functional catalysts, the cell potential of 0.66 V (0.67 V) was required to achieve 10 mA cm-2 for methanol (ethanol) electrolysis, much smaller than that of water electrolysis (1.76 V). The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis, and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter.

     

  • loading
  • [1]
    S. Liu, Z. Lin, R. Wan, Y. Liu, Z. Liu, S. Zhang, X. Zhang, Z. Tang, X. Lu, Y. Tian, Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting, J. Mater. Chem. A, 2021, 9, 21259-21269.
    [2]
    X. Liu, Y. Han, Y. Guo, X. Zhao, D. Pan, K. Li, Z. Wen, Electrochemical Hydrogen Generation by Oxygen Evolution Reaction-Alternative Anodic Oxidation Reactions, Advanced Energy and Sustainability Research, 2022, 3, 2200005.
    [3]
    L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen, X. Liu, Z. Wen, High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production, J. Am. Chem. Soc., 2022, 144, 7224-7235.
    [4]
    B. Hasa, J. Vakros, A. Katsaounis, Study of low temperature alcohol electro-reforming, Materials Today: Proceedings, 2018, 5, 27337-27344.
    [5]
    H. Li, X. Han, S. Jiang, L. Zhang, W. Ma, R. Ma, Z. Zhou, Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution, Green Energy & Environment, 2022, 7, 314-323.
    [6]
    D.Y. Li, L.L. Liao, H.Q. Zhou, Y. Zhao, F.M. Cai, J.S. Zeng, F. Liu, H. Wu, D.S. Tang, F. Yu, Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction, Mater. Today Phys., 2021, 16, 100314.
    [7]
    Y. Zhu, Q. Lin, Y. Zhong, H.A. Tahini, Z. Shao, H. Wang, Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts, Energy Environ. Sci., 2020, 13, 3361-3392.
    [8]
    S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction, Green Energy & Environment, 2021, 6, 458-478.
    [9]
    S. Wang, L. Zhao, J. Li, X. Tian, X. Wu, L. Feng, High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis, J. Energy Chem., 2022, 66, 483-492.
    [10]
    S. Pan, S. Ma, C. Chang, X. Long, K. Qu, Z. Yang, Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction, Mater. Today Phys., 2021, 18, 100401.
    [11]
    Y. Xu, M. Liu, M. Wang, T. Ren, K. Ren, Z. Wang, X. Li, L. Wang, H. Wang, Methanol Electroreforming Coupled to Green Hydrogen Production over Bifunctional NiIr-Based Metal-Organic Framework Nanosheet Arrays, Appl. Catal. B: Environ., 2021, 300, 120753.
    [12]
    L. Yang, Z. Liu, S. Zhu, L. Feng, W. Xing, Ni-based layered double hydroxide catalysts for oxygen evolution reaction, Mater. Today Phys., 2021, 16, 100292.
    [13]
    Q. Chang, S. Kattel, X. Li, Z. Liang, B.M. Tackett, S.R. Denny, P. Zhang, D. Su, J.G. Chen, Z. Chen, Enhancing C-C Bond Scission for Efficient Ethanol Oxidation using PtIr Nanocube Electrocatalysts, ACS Catal., 2019, 9, 7618-7625.
    [14]
    Y. Bao, F. Wang, X. Gu, L. Feng, Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation, Nanoscale, 2019, 11, 18866-18873.
    [15]
    M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu, B. Zhao, H. Yang, J.-L. Luo, X.-Z. Fu, CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption, J. Energy Chem., 2020, 50, 314-323.
    [16]
    Y. Jiang, H. Sun, Y. Li, J. He, Q. Xue, X. Tian, F. Li, S. Yin, D. Li, Y. Chen, Bifunctional Pd@RhPd Core-Shell Nanodendrites for Methanol Electrolysis, ACS Appl. Mater. Interfaces, 2021, 13, 35767-35776.
    [17]
    S.S. Pethaiah, K.K. Sadasivuni, A. Jayakumar, D. Ponnamma, C.S. Tiwary, G. Sasikumar, Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review, Energies, 2020, 13, 5879.
    [18]
    A. Muthumeenal, S.S. Pethaiah, A. Nagendran, Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol, Renewable Energy, 2016, 91, 75-82.
    [19]
    H.-M. Liu, S.-H. Han, Y.-Y. Zhu, P. Chen, Y. Chen, Reduced graphene oxide supported PdNi alloy nanocrystals for the oxygen reduction and methanol oxidation reactions, Green Energy & Environment, 2018, 3, 375-383.
    [20]
    X. Ding, M. Li, J. Jin, X. Huang, X. Wu, L. Feng, Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation, Chin. Chem. Lett., 2022, 33, 2687-2691.
    [21]
    L. Liu, Q.-Y. Zhu, J. Li, J. Chen, J. Huang, Q.-F. Sun, Z. Wen, Atomistic engineering of Ag/Pt nanoclusters for remarkably boosted mass electrocatalytic activity, Energy Materials, 2022, 2, 200007.
    [22]
    H. Li, S. Di, P. Niu, S. Wang, J. Wang, L. Li, A durable half-metallic diatomic catalyst for efficient oxygen reduction, Energy Environ. Sci., 2022, 15, 1601-1610.
    [23]
    C. Luan, Q. Zhou, Y. Wang, Y. Xiao, X. Dai, X. Huang, X. Zhang, A General Strategy Assisted with Dual Reductants and Dual Protecting Agents for Preparing Pt-Based Alloys with High-Index Facets and Excellent Electrocatalytic Performance, Small, 2017, 13, 1702617.
    [24]
    M. Li, L. Feng, Advances of phosphide promoter assisted Pt based catalyst for electrooxidation of methanol, Journal of Electrochemistry, 2022, 28, 2106211.
    [25]
    W. Gong, Z. Jiang, R. Wu, Y. Liu, L. Huang, N. Hu, P. Tsiakaras, P.K. Shen, Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation, Appl. Catal. B: Environ., 2019, 246, 277-283.
    [26]
    W. zhan, L. Ma, M. Gan, J. Ding, S. Han, D. Wei, J. Shen, C. Zhou, MOF-derived N-doped carbon coated CoP/carbon nanotube Pt-based catalyst for efficient methanol oxidation, Int. J. Hydrogen Energy, 2020, 45, 15630-15641.
    [27]
    Y. Xu, R. Wang, Z. Liu, L. Gao, T. Jiao, Z. Liu, Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution, Green Energy & Environment, 2022, 7, 829-839.
    [28]
    H. Wang, Y. Wang, L. Tan, L. Fang, X. Yang, Z. Huang, J. Li, H. Zhang, Y. Wang, Component-controllable cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon frameworks for efficient hydrogen evolution in alkaline conditions, Appl. Catal. B: Environ., 2019, 244, 568-575.
    [29]
    Q. Gao, C. Huang, Y. Ju, M. Gao, J. Liu, D. An, C. Cui, Y. Zheng, W. Li, S. Yu, Phase-Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts, Angew. Chem. Int. Ed., 2017, 56, 7769-7773.
    [30]
    T.-H. Lu, C.-J. Chen, M. Basu, C.-G. Ma, R.-S. Liu, The CoTe2 nanostructure: an efficient and robust catalyst for hydrogen evolution, Chem. Commun., 2015, 51, 17012-17015.
    [31]
    K. Wang, Z. Ye, C. Liu, D. Xi, C. Zhou, Z. Shi, H. Xia, G. Liu, G. Qiao, Morphology-Controllable Synthesis of Cobalt Telluride Branched Nanostructures on Carbon Fiber Paper as Electrocatalysts for Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, 2016, 8, 2910-2916.
    [32]
    W. Zhang, Y. Yang, B. Huang, F. Lv, K. Wang, N. Li, M. Luo, Y. Chao, Y. Li, Y. Sun, Z. Xu, Y. Qin, W. Yang, J. Zhou, Y. Du, D. Su, S. Guo, Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials, Adv. Mater., 2019, 31, 1805833.
    [33]
    H. Liu, D. Yang, Y. Bao, X. Yu, L. Feng, One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction, J. Power Sources, 2019, 434, 226754.
    [34]
    R. Mehek, N. Iqbal, T. Noor, H. Nasir, Y. Mehmood, S. Ahmed, Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation, Electrochim. Acta, 2017, 255, 195-204.
    [35]
    D.Y. Chung, K.-J. Lee, Y.-E. Sung, Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation, J. Phys. Chem. C, 2016, 120, 9028-9035.
    [36]
    W. Chen, J. Xue, Y. Bao, L. Feng, Surface engineering of nano-ceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction, Chem. Eng. J., 2020, 381, 122752.
    [37]
    L. Feng, R. Ding, Y. Chen, J. Wang, L. Xu, Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction, J. Power Sources, 2020, 452, 227837.
    [38]
    X. Gu, Z. Liu, M. Li, J. Tian, L. Feng, Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction, Appl. Catal. B: Environ., 2021, 297, 120462.
    [39]
    X. Yang, J. Xue, L. Feng, Pt nanoparticles anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction, Chem. Commun., 2019, 55, 11247-11250.
    [40]
    L. Fan, B. Liu, X. Liu, N. Senthilkumar, G. Wang, Z. Wen, Recent Progress in Electrocatalytic Glycerol Oxidation, Energy Technol., 2021, 9, 2000804.
    [41]
    S.L. Gojkovic, T.R. Vidakovic, Methanol oxidation on an ink type electrode using Pt supported on high area carbons, Electrochim. Acta, 2001, 47, 633-642.
    [42]
    G. Wu, L. Li, B.-Q. Xu, Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation, Electrochim. Acta, 2004, 50, 1-10.
    [43]
    J. Zhang, X. Qu, Y. Han, L. Shen, S. Yin, G. Li, Y. Jiang, S. Sun, Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance, Appl. Catal. B: Environ., 2020, 263, 118345.
    [44]
    R. Cui, S. Liu, X. Guo, H. Huang, J. Wang, B. Liu, Y. Li, D. Zhao, J. Dong, B. Sun, N-Doping Holey Graphene TiO2-Pt Composite as Efficient Electrocatalyst for Methanol Oxidation, ACS Applied Energy Materials, 2020, 3, 2665-2673.
    [45]
    M. Zha, Z. Liu, Q. Wang, G. Hu, L. Feng, Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst, Chem. Commun., 2021, 57, 199-202.
    [46]
    Y. Zhou, D. Liu, W. Qiao, Z. Liu, J. Yang, L. Feng, Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation, Mater. Today Phys., 2021, 17, 100357.
    [47]
    J. Yang, R. Hubner, J. Zhang, H. Wan, Y. Zheng, H. Wang, H. Qi, L. He, Y. Li, A.A. Dubale, Y. Sun, Y. Liu, D. Peng, Y. Meng, Z. Zheng, J. Rossmeisl, W. Liu, A Robust PtNi Nanoframe/N-Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability, Angew. Chem. Int. Ed., 2021, 60, 9590-9597.
    [48]
    J. Li, C. Wang, H. Shang, Y. Wang, H. You, H. Xu, Y. Du, Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis, Chem. Eng. J., 2021, 424, 130319.
    [49]
    Z. Li, X. Jiang, X. Wang, J. Hu, Y. Liu, G. Fu, Y. Tang, Concave PtCo nanocrosses for methanol oxidation reaction, Appl. Catal. B: Environ., 2020, 277, 119135.
    [50]
    W. Ren, W. Zang, H. Zhang, J. Bian, Z. Chen, C. Guan, C. Cheng, PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis, Carbon, 2019, 142, 206-216.
    [51]
    Y. Qin, X. Han, S. Gadipelli, J. Guo, S. Wu, L. Kang, J. Callison, Z. Guo, In situ synthesized low-PtCo@porous carbon catalyst for highly efficient hydrogen evolution, J. Mater. Chem. A, 2019, 7, 6543-6551.
    [52]
    Q. Wang, K. Cui, J. Li, Y. Wu, Y. Yang, X. Zhou, G. Ma, Z. Yang, Z. Lei, S. Ren, Phosphorus-doped CoTe2/C nanoparticles create new Co-P active sites to promote the hydrogen evolution reaction, Nanoscale, 2020, 12, 9171-9177.
    [53]
    X. Wang, X. Huang, W. Gao, Y. Tang, P. Jiang, K. Lan, R. Yang, B. Wang, R. Li, Metal-organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: a high-efficiency bifunctional electrocatalyst for overall water splitting, J. Mater. Chem. A, 2018, 6, 3684-3691.
    [54]
    M.J.S. Farias, E. Herrero, J.M. Feliu, Site Selectivity for CO Adsorption and Stripping on Stepped and Kinked Platinum Surfaces in Alkaline Medium, J. Phys. Chem. C, 2013, 117, 2903-2913.
    [55]
    J. Li, Y. Chang, D. Li, L. Feng, B. Zhang, Efficient synergism of V2O5 and Pd for alkaline methanol electrooxidation, Chem. Commun., 2021, 57, 7035-7038.
    [56]
    S. Moniri, T. Van Cleve, S. Linic, Pitfalls and best practices in measurements of the electrochemical surface area of platinum-based nanostructured electro-catalysts, J. Catal., 2017, 345, 1-10.
    [57]
    Y. Bao, M. Zha, P. Sun, G. Hu, L. Feng, PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation, J. Energy Chem., 2021, 59, 748-754.
    [58]
    D. Li, Y. Liu, Z. Liu, J. Yang, C. Hu, L. Feng, Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru-N coupling in defect-rich Ru/g-C3N4 nanosheets, J. Mater. Chem. A, 2021, 9, 15019-15026.
    [59]
    P. Li, K. Liu, J. Ye, F. Xue, Y. Cheng, Z. Lyu, X. Liao, W. Wang, Q. Zhang, X. Chen, M. Liu, S. Xie, Facilitating the C-C bond cleavage on sub-10 nm concavity-tunable Rh@Pt core-shell nanocubes for efficient ethanol electrooxidation, J. Mater. Chem. A, 2019, 7, 17987-17994.
    [60]
    L. Gao, Z. Yang, T. Sun, X. Tan, W. Lai, M. Li, J. Kim, Y.-F. Lu, S.-I. Choi, W. Zhang, C. Ma, S.C. Smith, Y.-G. Zhou, H. Huang, Autocatalytic Surface Reduction-Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction, Adv. Energy Mater., 2022, 12, 2103943.
    [61]
    K. Wang, D. Huang, Y. Guan, F. Liu, J. He, Y. Ding, Fine-Tuning the Electronic Structure of Dealloyed PtCu Nanowires for Efficient Methanol Oxidation Reaction, ACS Catal., 2021, 11, 14428-14438.
    [62]
    L. Hui, X. Zhang, Y. Xue, X. Chen, Y. Fang, C. Xing, Y. Liu, X. Zheng, Y. Du, C. Zhang, F. He, Y. Li, Highly Dispersed Platinum Chlorine Atoms Anchored on Gold Quantum Dots for a Highly Efficient Electrocatalyst, J. Am. Chem. Soc., 2022, 144, 1921-1928.
    [63]
    V.I. Pupyshev, . J. Quantum Chem, 2007, 107, 1446-1453.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (208) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return