Volume 9 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Ying-Xi Dang, Peng Tan, Bin Hu, Chen Gu, Xiao-Qin Liu, Lin-Bing Sun. Low-energy-consumption temperature swing system for CO2 capture by combining passive radiative cooling and solar heating. Green Energy&Environment, 2024, 9(3): 507-515. doi: 10.1016/j.gee.2022.08.004
Citation: Ying-Xi Dang, Peng Tan, Bin Hu, Chen Gu, Xiao-Qin Liu, Lin-Bing Sun. Low-energy-consumption temperature swing system for CO2 capture by combining passive radiative cooling and solar heating. Green Energy&Environment, 2024, 9(3): 507-515. doi: 10.1016/j.gee.2022.08.004

Low-energy-consumption temperature swing system for CO2 capture by combining passive radiative cooling and solar heating

doi: 10.1016/j.gee.2022.08.004
  • Temperature-swing adsorption (TSA) is an effective technique for CO2 capture, but the temperature swing procedure is energy-intensive. Herein, we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO2 on commercial activated carbons (CACs). During adsorption, the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP], which cools the adsorbents to a low temperature under sunlight through radiative cooling. For desorption, CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating. The heating and cooling processes are completely driven by solar energy. Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones. Furthermore, under real sunlight irradiation, the adsorption capacity of the CACs can be well maintained after multiple cycles. The present work may inspire the development of new temperature swing procedures with little energy consumption.

     

  • loading
  • [1]
    M. Allen, M. Babiker, Y. Chen, M. Taylor, P. Tschakert, H. Waisman, IPCC, 2018.
    [2]
    P. Arias, N. Bellouin, E. Coppola, R. Jones, G. Krinner, J. Marotzke, IPCC, 2021.
    [3]
    Y. Tan, W. Nookuea, H. Li, E. Thorin, J. Yan, Energy Convers. Manag. 118 (2016) 204-222.
    [4]
    R. Zhao, L. Liu, L. Zhao, S. Deng, S. Li, Y. Zhang, Renew. Sust. Energ. Rev. 114 (2019) 109285.
    [5]
    S.-H. Jo, Y.C. Park, J.-H. Moon, S. Lee, S.P. Han, C.-K. Yi, Energy Procedia 114 (2017) 6660-6665.
    [6]
    S. Sjostrom, C. Senior, Clean Energy 4 (2020) 12-25.
    [7]
    R. Zhao, S. Deng, S. Wang, L. Zhao, Y. Zhang, B. Liu, H. Li, Z. Yu, Appl. Therm. Eng. 128 (2018) 818-829.
    [8]
    L. Joss, M. Gazzani, M. Mazzotti, Chem. Eng. Sci. 158 (2017) 381-394.
    [9]
    M. Hefti, M. Mazzotti, Ind. Eng. Chem. Res. 57 (2018) 15542-15555.
    [10]
    L. Chen, S. Deng, R. Zhao, Y. Zhu, L. Zhao, S. Li, Appl. Therm. Eng. 199 (2021) 117538.
    [11]
    S.E. Zanco, M. Mazzotti, M. Gazzani, M.C. Romano, I. Martinez, AlChE J. 64 (2018) 1744-1759.
    [12]
    C.A. Grande, H. Kvamsdal, G. Mondino, R. Blom, Energy Procedia 114 (2017) 2203-2210.
    [13]
    Y. Chen, Y. Shi, H. Kou, D. Liu, Y. Huang, Z. Chen, B. Zhang, ACS Sustain. Chem. Eng. 7 (2019) 2911-2915.
    [14]
    K. Siala, A.K. Chowdhury, T.D. Dang, S. Galelli, Nat. Commun. 12 (2021) 1-10.
    [15]
    S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu, X. Liu, M. Chen, Y. Xiang, J. Wu, M. Zhang, Science 373 (2021) 692-696.
    [16]
    A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Nature 515 (2014) 540-544.
    [17]
    J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Science 362 (2018) 315-319.
    [18]
    T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, L. Wu, Nat. Commun. 12 (2021) 1-11.
    [19]
    X. Yu, J. Chan, C. Chen, Nano Energy 88 (2021) 106259.
    [20]
    Y. Sun, Y. Ji, M. Javed, X. Li, Z. Fan, Y. Wang, Z. Cai, B. Xu, Adv. Mater. Technol. 7 (2022) 2100803.
    [21]
    H. Zhang, L.-M. Yang, E. Ganz, ACS Sustain. Chem. Eng. 8 (2020) 14616-14626.
    [22]
    K. Kishibayev, J. Serafin, R. Tokpayev, T. Khavaza, A. Atchabarova, D. Abduakhytova, Z. Ibraimov, J. Srenscek-Nazzal, J. Environ. Chem. Eng. 9 (2021) 106798.
    [23]
    M. Sevilla, P. Valle-Vigon, A.B. Fuertes, Adv. Funct. Mater. 21 (2011) 2781-2787.
    [24]
    Q. Yang, D. Teng, J. Qu, P. Li, Y. Cao, Ind. Eng. Chem. Res. 60 (2021) 13023-13030.
    [25]
    J. Kou, L.-B. Sun, J. Mater. Chem. A 4 (2016) 17299-17307.
    [26]
    J.M. Park, H.C. Woo, S.H. Jhung, Chem. Eng. J. 412 (2021) 128641.
    [27]
    X. Liu, S.-C. Qi, A.-Z. Peng, D.-M. Xue, X.-Q. Liu, L.-B. Sun, J. Ind. Eng. Chem. 58 (2019) 11013-11021.
    [28]
    G. Singh, K.S. Lakhi, S. Sil, S.V. Bhosale, I. Kim, K. Albahily, A. Vinu, Carbon 148 (2019) 164-186.
    [29]
    A. Ghosh, G.N. Reddy, M.S. PK, S. Chatterjee, S. Bhattacharjee, R. Maitra, S.E. Lyubimov, A.V. Arzumanyan, A. Naumkin, A. Bhaumik, Green Chem. 24 (2022) 1673-1692.
    [30]
    X. Ma, L. Li, R. Chen, C. Wang, K. Zhou, H. Li, Fuel 236 (2019) 942-948.
    [31]
    B. Liu, X. Ma, R. Shi, K. Zhou, X. Xu, J. Qiu, H. Wang, Z. Zeng, L. Li, Energ. Fuel. 35 (2021) 15962-15968.
    [32]
    S.-J. Son, J.-S. Choi, K.-Y. Choo, S.-D. Song, S. Vijayalakshmi, T.-H. Kim, Korean J. Chem. Eng. 22 (2005) 291-297.
    [33]
    B. Zhu, C. Shang, Z. Guo, ACS Sustain. Chem. Eng. 4 (2016) 1050-1057.
    [34]
    A. Du, C. Sun, Z. Zhu, G. Lu, V. Rudolph, S.C. Smith, Nanotechnology 20 (2009) 375701.
    [35]
    C. Cazorla, S. Shevlin, Z. Guo, J. Phys. Chem. C 115 (2011) 10990-10995.
    [36]
    P.D. Dissanayake, S.W. Choi, A.D. Igalavithana, X. Yang, D.C. Tsang, C.-H. Wang, H.W. Kua, K.B. Lee, Y.S. Ok, Renew. Sust. Energ. Rev. 124 (2020) 109785.
    [37]
    A.E. Ogungbenro, D.V. Quang, K.A. Al-Ali, L.F. Vega, M.R. Abu-Zahra, J. Environ. Chem. Eng. 8 (2020) 104257.
    [38]
    Y.L. Tan, M.A. Islam, M. Asif, B.H. Hameed, Energy 77 (2014) 926-931.
    [39]
    T.L. Dantas, F.M.T. Luna, I.J. Silva Jr, D.C. de Azevedo, C.A. Grande, A.E. Rodrigues, R.F. Moreira, Chem. Eng. J. 169 (2011) 11-19.
    [40]
    A. Kongnoo, P. Intharapat, P. Worathanakul, C. Phalakornkule, J. Environ. Chem. Eng. 4 (2016) 73-81.
    [41]
    M.S. Shafeeyan, W.M.A.W. Daud, A. Shamiri, N. Aghamohammadi, Chem. Eng. Res. Des. 104 (2015) 42-52.
    [42]
    A.H. Berger, A.S. Bhown, Energy Procedia 4 (2011) 562-567.
    [43]
    Z. Li, G. Xiao, Q. Yang, Y. Xiao, C. Zhong, Chem. Eng. Sci. 120 (2014) 59-66.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (203) PDF downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return