Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Wenmei Han, Wenli Wang, Jie Fan, Runping Jia, Xuchun Yang, Tong Wu, Qingsheng Wu. A novel Ag/ZnO core–shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals. Green Energy&Environment, 2024, 9(2): 366-377. doi: 10.1016/j.gee.2022.07.004
Citation: Wenmei Han, Wenli Wang, Jie Fan, Runping Jia, Xuchun Yang, Tong Wu, Qingsheng Wu. A novel Ag/ZnO core–shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals. Green Energy&Environment, 2024, 9(2): 366-377. doi: 10.1016/j.gee.2022.07.004

A novel Ag/ZnO core–shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals

doi: 10.1016/j.gee.2022.07.004
  • The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems. This poses a great threat to human health. If the dosage of antibiotics is reduced by increasing its bactericidal performance, the emergence of drug resistance is certainly delayed, so that there's not enough time for developing drug resistance during treatment. Therefore, we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core–shell structures (AZ for short). Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system. The research results show that the antibacterial efficiency of the composite system is significantly increased, from the sum (34.7% + 22.8% = 57.5%) of the antibacterial efficiency of AZ and gentamicin to 80.2%, net synergizes 22.7%, which fully reflects the effect of 1 + 1 > 2. Therefore, the dosage of antibiotics can be drastically reduced in this way, which makes both the possibility of bacterial resistance and medical expenses remarkably decrease. Subsequently, residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst, which cuts off the path of environmental pollution. In short, such an innovative route has guiding significance for drug resistance.

     

  • loading
  • [1]
    S. Bornstein, J. Bacteriol. 39 (1940) 383-387.
    [2]
    G.G. Zhanel, C.D. Lawson, H. Adam, F. Schweizer, S. Zelenitsky, P.R.S. Lagace-Wiens, A. Denisuik, E. Rubinstein, A.S. Gin, D.J. Hoban, J.P.I. Lynch, J.A. Karlowsky, Drugs 73 (2013) 159-177.
    [3]
    S. Kondo, K. Iinuma, H. Yamamoto, K. Maeda, H. Umezawa, J. Antibiot. 26 (1973) 412-415.
    [4]
    W.M. Kirby, Science 99 (1944) 452-453.
    [5]
    T.N. Nguyen, N. Chansiripornchai, J.J. Carrique-Mas, Front. Vet. Sci. 4 (2017). https://doi.org/10.3389/fvets.2017.00126.
    [6]
    J. Fung-Tomc, E. Gradelski, E. Huczko, B. Minassian, D.P. Bonner, Int. J. Antimicrob. Ag. 18 (2001) 77-80.
    [7]
    D. Brown, Nat. Rev. Drug Discov. 14 (2015) 821-832.
    [8]
    E. Marti, E. Variatza, J. Luis Balcazar, Trends Microbiol. 22 (2014) 36-41.
    [9]
    S.A. Kraemer, A. Ramachandran, G.G. Perron, Microorganisms 7 (2019). https://doi.org/10.3390/microorganisms7060180.
    [10]
    Y. Ben, C. Fu, M. Hu, L. Liu, M.H. Wong, C. Zheng, Environ. Res. 169 (2019) 483-493.
    [11]
    G.D. Wright, Nat. Prod. Rep. 34 (2017) 694-701.
    [12]
    P. Fernandes, E. Martens, Biochem. Pharmacol. 133 (2017) 152-163.
    [13]
    M.I. Hutchings, A.W. Truman, B. Wilkinson, Curr. Opin. Microbiol. 51 (2019) 72-80.
    [14]
    M. Soylak, O. Ozalp, F. Uzcan, Trends Environ. Anal. 29 (2021). https://doi.org/10.1016/j.teac.2020.e00109.
    [15]
    R. Marin, D. Jaque, Chem. Rev. 121 (2021) 1425-1462.
    [16]
    S. Chai, G. Zan, K. Dong, T. Wu, Q. Wu, Nano Lett. 21 (2021) 8831-8838.
    [17]
    G. Zan, T. Wu, W. Dong, J. Zhou, T. Tu, R. Xu, Y. Chen, Y. Wang, Q. Wu, Adv. Fiber Mater. (2022), https://doi.org/10.1007/s42765-022-00162-7.
    [18]
    Y. Song, B. Peng, X. Yang, Q. Jiang, J. Liu, Green Energy Environ. 6 (2021) 597-606.
    [19]
    G. Zan, T. Wu, F. Zhu, P. He, Y. Cheng, S. Chai, Y. Wang, X. Huang, W. Zhang, Y. Wan, X. Peng, Q. Wu, Matter 4 (2021) 3232-3247.
    [20]
    Y. Ma, P. Ou, Z. Wang, A. Zhu, L. Lu, Y. Zhang, W. Zeng, J. Song, J. Pan, J. Colloid Interf. Sci. 579 (2020) 707-713.
    [21]
    Y. Zou, Y. Zhang, Q. Yu, H. Chen, Biomater. SCI-UK 9 (2021) 10-22.
    [22]
    Z. Cai, A.D. Dwivedi, W. Lee, X. Zhao, W. Liu, M. Sillanpaa, D. Zhao, C. Huang, J. Fu, Environ. Sci-Nano 5 (2018) 27-47.
    [23]
    Y. Xu, X. Liu, Y. Zheng, C. Li, K.W.K. Yeung, Z. Cui, Y. Liang, Z. Li, S. Zhu, S. Wu, Bioact. Mater. 6 (2021) 1575-1587.
    [24]
    Y. Liu, F. Li, Z. Guo, Y. Xiao, Y. Zhang, X. Sun, T. Zhe, Y. Cao, L. Wang, Q. Lu, J. Wang, Chem. Eng. J. 382 (2020). https://doi.org/10.1016/j.cej.2019.122990.
    [25]
    X. Zhang, G. Zhang, H. Zhang, X. Liu, J. Shi, H. Shi, X. Yao, P.K. Chu, X. Zhang, Chem. Eng. J. 382 (2020). https://doi.org/10.1016/j.cej.2019.122849.
    [26]
    H. Liao, P. Tan, R. Dong, M. Jiang, X. Hu, L. Lu, Y. Wang, H. Liu, Y. Liu, J. Pan, J. Colloid Interf. Sci. 591 (2021) 307-313.
    [27]
    P. Li, J. Li, C. Wu, Q. Wu, J. Li, Nanotechnology (2005). https://doi.org/10.1088/0957-4484/16/9/082.
    [28]
    M. Wei, H. Yu, Y. Guo, Y. Cheng, Y. Xie, W. Yao, BBA-Biomembranes 1863 (2021). https://doi.org/10.1016/j.bbamem.2021.183699.
    [29]
    K. Li, J. Chen, Y. Xue, T. Ding, S. Zhu, M. Mao, L. Zhang, Y. Han, Chem. Eng. J. 423 (2021). https://doi.org/10.1016/j.cej.2021.130133.
    [30]
    P. Apridamayanti, R. Sari, A. Rachmaningtyas, V. Aranthi, Nusantara Bioscience 13 (2021) 140-147.
    [31]
    H. Guo, L. Song, J. Hu, T. Lin, X. Li, H. Yu, D. Cheng, Y. Hou, X. Zhan, Q. Zhang, Chem. Eng. J. 420 (2021). https://doi.org/10.1016/j.cej.2020.127676.
    [32]
    J. Tian, J. Zhang, J. Yang, L. Du, H. Geng, Y. Cheng, ACS Appl. Mater. Inter. 9 (2017) 18512-18520.
    [33]
    Y. Zhang, Y. Yuan, W. Chen, J. Fan, H. Lv, Q. Wu, Colloid. Surface. B. 183 (2019). https://doi.org/10.1016/j.colsurfb.2019.110371.
    [34]
    L. Li, X. Zheng, Y. Chi, Y. Wang, X. Sun, Q. Yue, B. Gao, S. Xu, J. Hazard. Mater. 383 (2020). https://doi.org/10.1016/j.jhazmat.2019.121211.
    [35]
    X. Yang, Z. Chen, W. Zhao, C. Liu, X. Qian, M. Zhang, G. Wei, E. Khan, Y.H. Ng, Y.S. Ok, Chem. Eng. J. 405 (2021). https://doi.org/10.1016/j.cej.2020.126806.
    [36]
    S. Yin, Y. Chen, M. Li, Q. Hu, Y. Ding, Y. Shao, J. Di, J. Xia, H. Li, Green Energy Environ. 5 (2020) 203-213.
    [37]
    G. Zan, T. Wu, Z. Zhang, J. Li, J. Zhou, F. Zhu, H. Chen, M. Wen, X. Yang, X. Peng, J. Chen, Q. Wu, Adv. Sci. (2021) e2103714.
    [38]
    Q. Li, F. Lu, H. Ye, K. Yu, B. Lu, R. Bao, Y. Xiao, F. Dai, G. Lan, ACS Sustain. Chem. Eng. 6 (2018) 9813-9821.
    [39]
    H.F.O. Silva, R.P. de Lima, F.S.L. Da Costa, E.P. Moraes, M.C.N. Melo, C. Sant'Anna, M. Eugenio, L.H.S. Gasparotto, RSC Adv. 8 (2018) 23578-23584.
    [40]
    Y. Zhang, L. Wang, X. Xu, F. Li, Q. Wu, Nanomedicine-UK 13 (2018) 339-351.
    [41]
    M.F.A. Khavarani, M. Najafi, Z. Shakibapour, D. Zaeifi, Iran. J. Biotechnol. 14 (2016) 39-44.
    [42]
    Y. Zhang, X. Zhang, R. Hu, Y. Yang, P. Li, Q. Wu, RSC Adv. 9 (2019) 17913-17920.
    [43]
    C. Khurana, P. Sharma, O.P. Pandey, B. Chudasama, J. Mater. Sci. Technol. 32 (2016) 524-532.
    [44]
    G. Sun, J. Shi, S. Mao, D. Ma, C. He, H. Wang, Y. Cheng, Chem. Eng. J. 429 (2022) 132382.
    [45]
    P. Zhang, P. Wu, S. Bao, Z. Wang, B. Tian, J. Zhang, Chem. Eng. J. 306 (2016) 1151-1161.
    [46]
    X. Sun, Y. Li, Langmuir 21 (2005) 6019-6024.
    [47]
    J. C. Klein, D.M. Hercules, J. Catal. 82 (1983) 424-441.
    [48]
    R. J. Bird, P. Swift, J. Electron. Spectrosc. 21 (1980) 227-240.
    [49]
    A. Pashutski, A. Hoffman, M. Folman, Surf. Sci. 208 (1989) 91-97.
    [50]
    D.W. Langer, C.J. Vesely, Phys. Rev. B 2 (1970) 4885-4892.
    [51]
    L.M. Stabryla, K.A. Johnston, N.A. Diemler, V.S. Cooper, J.E. Millstone, S. Haig, L.M. Gilbertson, Nat. Nanotechnol. 16 (2021) 996-1003.
    [52]
    M. Xiao, Z. Wang, M. Lyu, B. Luo, S. Wang, G. Liu, H. Cheng, L. Wang, Adv. Mater. 31 (2019). https://doi.org/10.1002/adma.201801369.
    [53]
    Y. Wang, J. Zhao, Z. Chen, F. Zhang, W. Guo, H. Lin, F. Qu, Appl. Catal. B-Environ. 244 (2018) 76-86.
    [54]
    D. Ma, J. Shi, D. Sun, Y. Zou, L. Cheng, C. He, H. Wang, C. Niu, L. Wang, Appl. Catal. B-Environ. 244 (2019) 748-757.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (302) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return