Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Yue Zhang, Chenlu Wang, Chunlei Wang, Yingyan Zhang, Junhua Zhao, Ning Wei. Lamellar water induced quantized interlayer spacing of nanochannels walls. Green Energy&Environment, 2024, 9(2): 356-365. doi: 10.1016/j.gee.2022.06.009
Citation: Yue Zhang, Chenlu Wang, Chunlei Wang, Yingyan Zhang, Junhua Zhao, Ning Wei. Lamellar water induced quantized interlayer spacing of nanochannels walls. Green Energy&Environment, 2024, 9(2): 356-365. doi: 10.1016/j.gee.2022.06.009

Lamellar water induced quantized interlayer spacing of nanochannels walls

doi: 10.1016/j.gee.2022.06.009
  • The nanoscale confinement is of great important for the industrial applications of molecular sieve, desalination, and also essential in biological transport systems. Massive efforts have been devoted to the influence of restricted spaces on the properties of confined fluids. However, the situation of channel-wall is crucial but attracts less attention and remains unknown. To fundamentally understand the mechanism of channel-walls in nanoconfinement, we investigated the interaction between the counter-force of the liquid and interlamellar spacing of nanochannel walls by considering the effect of both spatial confinement and surface wettability. The results reveal that the nanochannel stables at only a few discrete spacing states when its confinement is within 1.4 nm. The quantized interlayer spacing is attributed to water molecules becoming laminated structures, and the stable states are corresponding to the monolayer, bilayer and trilayer water configurations, respectively. The results can potentially help to understand the characterized interlayers spacing of graphene oxide membrane in water. Our findings are hold great promise in design of ion filtration membrane and artificial water/ion channels.

     

  • loading
  • [1]
    F. Meng, Y. Zhang, S. Zhang, B. Ju, B. Tang, Green Energy Environ. (2021) doi.org/10.1016/j.gee.2021.04.004.
    [2]
    X. Liu, Y. Shan, S. Zhang, Q. Kong, H. Pang, Green Energy Environ. (2022) doi.org/10.1016/j.gee.2022.03.005.
    [3]
    S. Lin, H. Zhao, L. Zhu, T. He, S. Chen, C. Gao, L. Zhang, Desalination. 498 (2021) 114728.
    [4]
    G. Doornbusch, M. Van Der Wal, M. Tedesco, J. Post, K. Nijmeijer, Z. Borneman, Desalination. 505 (2021) 114973.
    [5]
    J. Safaei, P. Xiong, G. Wang, Mater. Today Adv. 8 (2020) 100108.
    [6]
    T. Wang, H. Huang, H. Li, Y. Sun, Y. Xue, S. Xiao, J. Yang, New Carbon Materials. 36 (2021) 683-701.
    [7]
    Y. You, X.H. Jin, X.Y. Wen, V. Sahajwalla, V. Chen, H. Bustamante, R.K. Joshi, Carbon. 129 (2018) 415-419.
    [8]
    P. Sun, H. Liu, K. Wang, M. Zhong, D. Wu, H. Zhu, Chem. Commun. 51 (2015) 3251-3254.
    [9]
    X. Xing, M. Wang, R. Liu, S. Zhang, K. Zhang, B. Li, G. Zhang, Green Energy Environ. 1 (2016) 138-143.
    [10]
    L. Dai, K. Huang, Y. Xia, Z. Xu, Green Energy Environ. 6 (2021) 193-211.
    [11]
    L. Sun, Y. Ying, H. Huang, Z. Song, Y. Mao, Z. Xu, X. Peng, ACS Nano. 8 (2014) 6304-6311.
    [12]
    P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, ACS Nano. 7 (2013) 428-437.
    [13]
    R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Science. 343 (2014) 752.
    [14]
    Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater. 23 (2013) 3693-3700.
    [15]
    Y.-H. Xi, Z. Liu, J. Ji, Y. Wang, Y. Faraj, Y. Zhu, R. Xie, X.-J. Ju, W. Wang, X. Lu, L.-Y. Chu, J. Membr. Sci. 550 (2018) 208-218.
    [16]
    C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, J. Phys. Chem. Lett. 6 (2015) 4026-4031.
    [17]
    N. Wei, C. Lv, Z. Xu, Langmuir. 30 (2014) 3572-3578.
    [18]
    S. Park, J. An, J.W. Suk, R.S. Ruoff, Small. 6 (2010) 210-212.
    [19]
    S. Cerveny, F. Barroso-Bujans, A. Alegria, J. Colmenero, J. Phys. Chem. C. 114 (2010) 2604-2612.
    [20]
    G. Liu, W. Jin, N. Xu, Chem. Soc. Rev. 44 (2015) 5016-5030.
    [21]
    Y. Zhang, S. Zhang, T.S. Chung, Environ Sci Technol. 49 (2015) 10235-10242.
    [22]
    D.W. Boukhvalov, M.I. Katsnelson, Y.-W. Son, Nano Lett. 13 (2013) 3930-3935.
    [23]
    S. Rouziere, P. Launois, A.M. Benito, W.K. Maser, E. Paineau, Carbon. 137 (2018) 379-383.
    [24]
    J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Nat. Nanotechnol. 12 (2017) 546-550.
    [25]
    L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Nature. 550 (2017) 380-383.
    [26]
    J. Sun, W. Zhang, J. Zhang, D. Hou, Constr. Build. Mater. 280 (2021) 122477.
    [27]
    H. Qiu, X.C. Zeng, W. Guo, ACS Nano. 9 (2015) 9877-9884.
    [28]
    N. Giovambattista, P.J. Rossky, P.G. Debenedetti, Phys. Rev. Lett. 102 (2009) 050603.
    [29]
    W.-H. Zhao, L. Wang, J. Bai, L.-F. Yuan, J. Yang, X.C. Zeng, Acc. Chem. Res. 47 (2014) 2505-2513.
    [30]
    W.-H. Zhao, J. Bai, L.-F. Yuan, J. Yang, X.C. Zeng, Chem. Sci. 5 (2014) 1757-1764.
    [31]
    Y. Zhu, F. Wang, J. Bai, X.C. Zeng, H. Wu, ACS Nano. 9 (2015) 12197-12204.
    [32]
    S. Han, M.Y. Choi, P. Kumar, H.E. Stanley, Nat. Phys. 6 (2010) 685-689.
    [33]
    K. Koga, X.C. Zeng, H. Tanaka, Phys. Rev. Lett. 79 (1997) 5262-5265.
    [34]
    G. Cicero, J.C. Grossman, E. Schwegler, F. Gygi, G. Galli, J. Am. Chem. Soc. 130 (2008) 1871-1878.
    [35]
    D. Wang, Y. Tian, L. Jiang, Small. 17 (2021) 2100788.
    [36]
    G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature. 414 (2001) 188-190.
    [37]
    S. Chakraborty, H. Kumar, C. Dasgupta, P.K. Maiti, Acc. Chem. Res. 50 (2017) 2139-2146.
    [38]
    G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Nature. 519 (2015) 443-445.
    [39]
    S. Zhang, Y. Wang, H. He, F. Huo, Y. Lu, X. Zhang, K. Dong, Green Energy Environ. 2 (2017) 329-330.
    [40]
    K. Dong, F. Huo, S. Zhang, Green Energy Environ. 5 (2020) 251-258.
    [41]
    M. Raju, A. Van Duin, M. Ihme, Sci. Rep. 8 (2018) 3851.
    [42]
    Z. Chen, J. Yang, C. Ma, K. Zhou, S. Jiao, J. Phys. Chem. B. 125 (2021) 9824-9833.
    [43]
    J. Li, Y. Zhu, J. Xia, J. Fan, H. Wu, F. Wang, J. Chem. Phys. 154 (2021) 224508.
    [44]
    M. Neek-Amal, F.M. Peeters, I.V. Grigorieva, A.K. Geim, ACS Nano. 10 (2016) 3685-3692.
    [45]
    S.A. Hosseini Kordkheili, H. Moshrefzadeh-Sani, Comput. Mater. Sci. 69 (2013) 335-343.
    [46]
    S. Kim, S. Zhou, Y. Hu, M. Acik, Y.J. Chabal, C. Berger, W. De Heer, A. Bongiorno, E. Riedo, Nat. Mater. 11 (2012) 544-549.
    [47]
    N. Wei, Y. Chen, K. Cai, Y. Zhang, Q. Pei, J.-C. Zheng, Y.-W. Mai, J. Zhao, Green Energy Environ. 7 (2022) 86-94.
    [48]
    I.M. Svishchev, P.G. Kusalik, J. Wang, R.J. Boyd, J. Chem. Phys. 105 (1996) 4742-4750.
    [49]
    Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124 (2006) 024503.
    [50]
    W. Xiong, J.Z. Liu, M. Ma, Z. Xu, J. Sheridan, Q. Zheng, Phys. Rev. E. 84 (2011) 056329.
    [51]
    N. Wei, X. Peng, Z. Xu, Phys. Rev. E. 89 (2014) 012113.
    [52]
    J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan, N.A. Koratkar, Nat. Mater. 11 (2012) 217-222.
    [53]
    T. Werder, J.H. Walther, R.L. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B. 107 (2003) 1345.
    [54]
    N. Wei, X. Peng, Z. Xu, ACS Appl. Mater. Interfaces. 6 (2014) 5877-5883.
    [55]
    Z. Li, S. Xiong, C. Sievers, Y. Hu, Z. Fan, N. Wei, H. Bao, S. Chen, D. Donadio, T. Ala-Nissila, J. Chem. Phys. 151 (2019) 234105.
    [56]
    Y. Huang, M. Zeng, J. Ren, J. Wang, L. Fan, Q. Xu, Colloids and Surfaces A: Physicochem. EngAspects. 401 (2012) 97-106.
    [57]
    A. Luzar, D. Chandler, Nature. 379 (1996) 55-57.
    [58]
    M.C. Gordillo, J. Martí, Chem. Phys. Lett. 329 (2000) 341-345.
    [59]
    S.-T. Lin, P.K. Maiti, W.A. Goddard, J. Phys. Chem. B. 114 (2010) 8191-8198.
    [60]
    C. Wang, Y. Wang, J. Liu, M. Wang, Z. Gan, H. He, Chem Eng J. 440 (2022) 135918.
    [61]
    S.-T. Lin, M. Blanco, W.A. Goddard, J. Chem. Phys. 119 (2003) 11792-11805.
    [62]
    K.T. He, J.D. Wood, G.P. Doidge, E. Pop, J.W. Lyding, Nano Lett. 12 (2012) 2665-2672.
    [63]
    Y. Wang, H. He, C. Wang, Y. Lu, K. Dong, F. Huo, S. Zhang, JACS Au. 2 (2022) 543-561.
    [64]
    M. Wang, Y. Wang, C. Wang, Z. Gan, F. Huo, H. He, S. Zhang, J. Phys. Chem. Lett. 12 (2021) 6078-6084.
    [65]
    A. Lerf, A. Buchsteiner, J. Pieper, S. Schottl, I. Dekany, T. Szabo, H.P. Boehm, J. Phys. Chem. Solids. 67 (2006) 1106-1110.
    [66]
    R. Liu, T. Gong, K. Zhang, C. Lee, Sci. Rep. 7 (2017) 9761.
    [67]
    R. Radhakrishnan, K.E. Gubbins, M. Sliwinska-Bartkowiak, J. Chem. Phys. 112 (2000) 11048-11057.
    [68]
    S. Jiao, Z. Xu, ACS Nano. 11 (2017) 11152-11161.
    [69]
    S. Li, Y. Chen, J. Zhao, C. Wang, N. Wei, Nanoscale. 12 (2020) 17870-17879.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (289) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return