Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Pingping Yang, Xin Yang, Wenzhu Liu, Ruike Guo, Zufu Yao. Graphene-based electrocatalysts for advanced energy conversion. Green Energy&Environment, 2023, 8(5): 1265-1278. doi: 10.1016/j.gee.2022.06.008
Citation: Pingping Yang, Xin Yang, Wenzhu Liu, Ruike Guo, Zufu Yao. Graphene-based electrocatalysts for advanced energy conversion. Green Energy&Environment, 2023, 8(5): 1265-1278. doi: 10.1016/j.gee.2022.06.008

Graphene-based electrocatalysts for advanced energy conversion

doi: 10.1016/j.gee.2022.06.008
  • Graphene-based nanocatalysts have appealed much interest as advanced electrocatalysts toward energy conversion reactions due to their outstanding electrocatalytic performance from the distinctive chemical composites and strong synergistic effects. Aiming to better understand the role of graphene played in enhancing the catalytic performance and offer guidance for fabricating more efficient graphene-based electrocatalysts, we herein summarize the remarkable achievements of graphene-based electrocatalysts for energy-conversion-related reactions. Started by discussing applications of graphene in the electrocatalytic reactions, we have manifested the crucial role of graphene played in promoting the catalytic performance. Subsequently, many representative graphene-based catalyst hybrids for electrocatalytic reactions are also overviewed, showing many effective strategies for the fabrication of more efficient graphene-related materials for the practical application. Finally, the perspective insights and challenging issues are also concluded to provide directions for the future development.

     

  • loading
  • [1]
    H. Xu, Y. Zhao, Q. Wang, G. He, H. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis, Coord. Chem. Rev. 451 (2022) 214261.
    [2]
    Y. Sun, H. Liao, J. Wang, B. Chen, S. Sun, S.J.H. Ong, S. Xi, C. Diao, Y. Du, J.-O. Wang, M.B.H. Breese, S. Li, H. Zhang, Z.J. Xu, Covalency competition dominates the water oxidation structure-activity relationship on spinel oxides, Nat. Catal. 3(7) (2020) 554-563.
    [3]
    P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu, F. Kapteijn, A. Dikhtiarenko, Y. Chen, X. Gu, X. Tang, Electronic metal-support interactions in single-atom catalysts, Angew. Chem. Int. Ed. 53(13) (2014) 3418-3421.
    [4]
    H. Xu, H. Shang, C. Wang, Y. Du, Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis, Small 17(5) (2021) 2005092.
    [5]
    L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B.Y. Xia, Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells, Acc. Chem. Res. 54(2) (2021) 311-322.
    [6]
    Y. Zhang, C. Li, X. Liu, J. Xu, X. Yang, Z. Zhang, Spin Regulation on 2D Pd-Fe-Pt Nanomeshes Promotes Fuel Electrooxidations, Green Energy Environ. 6(5) (2021) 734-742.
    [7]
    H. Xu, B. Huang, Y. Zhao, G. He, H. Chen, Engineering Heterostructured Pd-Bi2Te3 Doughnut/Pd Hollow Nanospheres for Ethylene Glycol Electrooxidation, Inorg. Chem. 61(10) (2022) 4533-4540.
    [8]
    L. Tian, Z. Li, X. Xu, C. Zhang, Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis, J. Mater. Chem. A 9(23) (2021) 13459-13470.
    [9]
    H. Xu, Y. Zhao, G. He, H. Chen, Race on engineering noble metal single-atom electrocatalysts for water splitting, Int. J. Hydrogen Energy 47(31) (2022) 14257-14279.
    [10]
    Z. Li, D. Liu, X. Lu, M. Du, Z. Chen, J. Teng, R. Sha, L. Tian, Boosting oxygen evolution of layered double hydroxide through electronic coupling with ultralow noble metal doping, Dalton Trans. 51 (2022) 1527-1532.
    [11]
    J. Hou, C. Wang, P. Zhai, M. Xia, Y. Wu, B. Zhang, Z. Li, L. Ran, J. Gao, X. Zhang, Z. Fan, L. Sun, Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction, Angew. Chem. Int. Ed. 133 (2021) 27332-27340.
    [12]
    X.F. Lu, S.L. Zhang, W.L. Sim, S. Gao, X.W.D. Lou, Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis, Angew. Chem. Int. Ed. 60(42) (2021) 22885-22891.
    [13]
    L. Jin, H. Xu, C. Chen, H. Shang, Y. Wang, C. Wang, Y. Du, Three-dimensional PdCuM (M = Ru, Rh, Ir) Trimetallic Alloy Nanosheets for Enhancing Methanol Oxidation Electrocatalysis, ACS Appl. Mater. Interfaces 11(45) (2019) 42123-42130.
    [14]
    R. Lin, T. Zheng, L. Chen, H. Wang, X. Cai, Y. Sun, Z. Hao, Anchored Pt-Co Nanoparticles on Honeycombed Graphene as Highly Durable Catalysts for the Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces 13(29) (2021) 34397-34409.
    [15]
    Z. Li, X. Xu, X. Lu, C. He, J. Huang, W. Sun, L. Tian, Synergistic coupling of FeNi3 alloy with graphene carbon dots for advanced oxygen evolution reaction electrocatalysis, J. Colloid Interface Sci. 615 (2022) 273-281.
    [16]
    Q. Zhang, M. Zhang, T. Chen, L. Li, S. Shi, R. Jiang, Unconventional phase engineering of fuel-cell electrocatalysts, J. Electroanal. Chem. 916 (2022) 116363.
    [17]
    Z. Wu, Z. Zou, J. Huang, F. Gao, NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities, ACS Appl. Mater. Interfaces 10(31) (2018) 26283-26292.
    [18]
    Y. Yao, Y. Zhu, C. Pan, C. Wang, S. Hu, W. Xiao, X. Chi, Y. Fang, J. Yang, H. Deng, S. Xiao, J. Li, Z. Luo, Y. Guo, Interfacial sp C-O-Mo Hybridization Originated High-Current Density Hydrogen Evolution, J. Am. Chem. Soc. 143(23) (2021) 8720-8730.
    [19]
    Z. Li, C. Li, J. Huang, W. Sun, W. Cheng, C. He, L. Tian, Structure engineering of amorphous P-CoS hollow electrocatalysts for promoted oxygen evolution reaction, Int. J. Hydrogen Energy 47(34) (2022) 15189-15197.
    [20]
    L. Tian, Z. Li, M. Song, J. Li, Recent Progress on Water-Splitting Electrocatalysis Mediated by 2D Noble Metal Materials, Nanoscale 13(2021) 12088-12101.
    [21]
    L. Tian, Z. Li, X. Xu, C. Zhang, Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis, J. Mater. Chem. A 9(23) (2021) 13459-13470.
    [22]
    X. Li, X. Yang, Y. Huang, T. Zhang, B. Liu, Supported Noble-Metal Single Atoms for Heterogeneous Catalysis, Adv. Mater. 31(50) (2019) 1902031.
    [23]
    C. Dong, L. Yang, C. Lian, X. Yang, Y. Zhu, H. Jiang, C. Li, Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis, Green Energy Environ. 2021, DOI: 10.1016/j.gee.2021.03.012.
    [24]
    Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, S. Guo, Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials, Adv. Energy Mater. 10(11) (2020) 1903120.
    [25]
    Z.P. Wu, S. Shan, S.Q. Zang, C.J. Zhong, Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies, Acc. Chem. Res. 53(12) (2020) 2913-2924.
    [26]
    D.S. Bin, Y.S. Xu, S.J. Guo, Y.G. Sun, A.M. Cao, L.J. Wan, Manipulating Particle Chemistry for Hollow Carbon-based Nanospheres: Synthesis Strategies, Mechanistic Insights, and Electrochemical Applications, Acc. Chem. Res. 54(1) (2021) 221-231.
    [27]
    Y. Zuo, T. Li, N. Zhang, T. Jing, D. Rao, P. Schmuki, S. Kment, R. Zboril, Y. Chai, Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors, ACS Nano 15(4) (2021) 7790-7798.
    [28]
    W. Yao, X. Jiang, Y. Li, C. Zhao, L. Ding, D. Sun, Y. Tang, N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting, Green Energy Environ. 2021, DOI: 10.1016/j.gee.2021.01.011.
    [29]
    G. Qian, G. Yu, J. Lu, L. Luo, T. Wang, C. Zhang, R. Ku, S. Yin, W. Chen, S. Mu, Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density, J. Mater. Chem. A 8(29) (2020) 14545-14554.
    [30]
    H.Y. Zhuo, X. Zhang, J.X. Liang, Q. Yu, H. Xiao, J. Li, Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance, Chem. Rev. 120(21) (2020) 12315-12341.
    [31]
    J.-M. Yang, S.-A. Wang, C.-L. Sun, M.-D. Ger, Synthesis of size-selected Pt nanoparticles supported on sulfonated graphene with polyvinyl alcohol for methanol oxidation in alkaline solutions, J. Power Sources 254 (2014) 298-305.
    [32]
    B. Xia, Y. Yan, X. Wang, X.W. Lou, Recent progress on graphene-based hybrid electrocatalysts, Mater. Horiz. 1(4) (2014) 379-399.
    [33]
    Q. Wang, H. Miao, S. Sun, Y. Xue, Z. Liu, One-Pot Synthesis of Co3O4 /Ag Nanoparticles Supported on N-Doped Graphene as Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc-Air Batteries, Chemistry 24(55) (2018) 14816-14823.
    [34]
    H. Xu, B. Yan, S. Li, J. Wang, C. Wang, J. Guo, Y. Du, N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid, Chem. Eng. J. 334 (2018) 2638-2646.
    [35]
    W. Zhuang, Z. Li, M. Song, W. Zhu, L. Tian, Synergistic improvement in electron transport and active sites exposure over RGO supported NiP/Fe4P for oxygen evolution reaction, Ionics 28 (2022) 1359-1366.
    [36]
    Y. Sun, F. Alimohammadi, D. Zhang, G. Guo, Enabling Colloidal Synthesis of Edge-Oriented MoS2 with Expanded Interlayer Spacing for Enhanced HER Catalysis, Nano Lett. 17(3) (2017) 1963-1969.
    [37]
    J.-S. Lin, S.R. Kumar, W.-T. Ma, C.-M. Shih, L.-W. Teng, C.-C. Yang, S.J. Lue, Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density, J. Memb. Sci. 543 (2017) 28-39.
    [38]
    Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L.J. Wan, Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries, J. Am. Chem. Soc. 141(9) (2019) 3977-3985.
    [39]
    W. Su, R. Sun, F. Ren, Y. Yao, Z. Fei, H. Wang, Z. Liu, R. Xing, Y. Du, Graphene supported palladium-phosphorus nanoparticles as a promising catalyst for ethylene glycol oxidation, Appl. Surf. Sci. 491 (2019) 735-741.
    [40]
    X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, C.M. Li, Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media, Nano Energy 62 (2019) 117-126.
    [41]
    X. Tong, M. Cherif, G. Zhang, X. Zhan, J. Ma, A. Almesrati, F. Vidal, Y. Song, J.P. Claverie, S. Sun, N, P-Codoped Graphene Dots Supported on N-Doped 3D Graphene as Metal-Free Catalysts for Oxygen Reduction, ACS Appl. Mater Interfaces 13(26) (2021) 30512-30523.
    [42]
    H. Song, M. Wu, Z. Tang, J.S. Tse, B. Yang, S. Lu, Single Atom Ruthenium-Doped CoP/CDs Nanosheets via Splicing of Carbon-Dots for Robust Hydrogen Production, Angew. Chem. Int. Ed. 60(13) (2021) 7234-7244.
    [43]
    X. Song, N. Li, H. Zhang, L. Wang, Y. Yan, H. Wang, L. Wang, Z. Bian, Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production, ACS Appl. Mater. Interfaces 12(15) (2020) 17519-17527.
    [44]
    X. Hu, T. Huang, Y. Tang, G. Fu, J.M. Lee, Three-Dimensional Graphene-Supported Ni3Fe/Co9S8 Composites: Rational Design and Active for Oxygen Reversible Electrocatalysis, ACS Appl. Mater. Interfaces 11(4) (2019) 4028-4036.
    [45]
    X. Qiu, X. Yan, H. Pang, J. Wang, D. Sun, S. Wei, L. Xu, Y. Tang, Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction, Adv. Sci. 6(2) (2019) 1801103.
    [46]
    J. Li, Y. Zhang, X. Zhang, J. Huang, J. Han, Z. Zhang, X. Han, P. Xu, B. Song, S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts, ACS Appl Mater Interfaces 9(1) (2017) 398-405.
    [47]
    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19) (2011) 7296-7299.
    [48]
    Y.-S. Ye, M.-Y. Cheng, X.-L. Xie, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells, J. Power Sources 239 (2013) 424-432.
    [49]
    J.-N. Zheng, J.-J. Lv, S.-S. Li, M.-W. Xue, A.-J. Wang, J.-J. Feng, One-pot synthesis of reduced graphene oxide supported hollow Ag@Pt core-shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation, J. Mater. Chem. A 2(10) (2014) 3445-3451.
    [50]
    S. Xue, L. Chen, Z. Liu, H.M. Cheng, W. Ren, NiPS3 Nanosheet-Graphene Composites as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction, ACS Nano 12(6) (2018) 5297-5305.
    [51]
    H. Xu, B. Yan, K. Zhang, J. Wang, S. Li, C. Wang, Y. Shiraishi, Y. Du, P. Yang, Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol, Electrochim. Acta 245 (2017) 227-236.
    [52]
    J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media, Nat. Commun. 8 (2017) 14969.
    [53]
    Y. Ito, H.J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M. Chen, Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction, Adv Mater 26(24) (2014) 4145-4150.
    [54]
    L.H. Karlsson, J. Birch, J. Halim, M.W. Barsoum, P.O. Persson, Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets, Nano Lett. 15(8) (2015) 4955-4960.
    [55]
    J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li, Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties, Adv. Mater. 30(11) (2018) 1705369.
    [56]
    D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions, Adv. Mater. 29(48) (2017) 1606459.
    [57]
    Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn-Air Batteries, ACS Energy Lett. 3(5) (2018) 1183-1191.
    [58]
    T. Sun, G. Zhang, D. Xu, X. Lian, H. Li, W. Chen, C. Su, Defect chemistry in 2D materials for electrocatalysis, Mater. Today Energy 12 (2019) 215-238.
    [59]
    A. Zagalskaya, V. Alexandrov, Role of Defects in the Interplay between Adsorbate Evolving and Lattice Oxygen Mechanisms of the Oxygen Evolution Reaction in RuO2 and IrO2, ACS Catal. 10(6) (2020) 3650-3657.
    [60]
    P. Han, X. Yu, D. Yuan, M. Kuang, Y. Wang, A.M. Al-Enizi, G. Zheng, Defective graphene for electrocatalytic CO2 reduction, J. Colloid Interface Sci. 534 (2019) 332-337.
    [61]
    T. Zhang, W. Li, K. Huang, H. Guo, Z. Li, Y. Fang, R.M. Yadav, V. Shanov, P.M. Ajayan, L. Wang, C. Lian, J. Wu, Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion, Nat. Commun. 12(1) (2021) 5265.
    [62]
    J. Lai, F. Lin, Y. Tang, P. Zhou, Y. Chao, Y. Zhang, S. Guo, Efficient Bifunctional Polyalcohol Oxidation and Oxygen Reduction Electrocatalysts Enabled by Ultrathin PtPdM (M = Ni, Fe, Co) Nanosheets, Adv. Energy Mater. 9(8) (2019) 1800684.
    [63]
    J.J. Duan, X.X. Zheng, H.J. Niu, J.J. Feng, Q.L. Zhang, H. Huang, A.J. Wang, Porous dendritic PtRuPd nanospheres with enhanced catalytic activity and durability for ethylene glycol oxidation and oxygen reduction reactions, J. Colloid Interface Sci. 560 (2020) 467-474.
    [64]
    H. Chen, R. Wu, P.K. Shen, One-Pot Fabrication of Site-Selective Hexapod PtPdCu Concave Rhombic Dodecahedrons as Highly Efficient Catalysts for Electrocatalysis, ACS Sustain. Chem. Eng. 8(3) (2020) 1520-1526.
    [65]
    J. Xue, G. Han, W. Ye, Y. Sang, H. Li, P. Guo, X.S. Zhao, Structural Regulation of PdCu2 Nanoparticles and Their Electrocatalytic Performance for Ethanol Oxidation, ACS Appl. Mater. Interfaces 8(50) (2016) 34497-34505.
    [66]
    S.P. Babu, P. Elumalai, Tunable compositions of Pd100−xCux catalysts towards the electrooxidation of ethanol and ethylene glycol, New J. Chem. 41(22) (2017) 13812-13822.
    [67]
    H.-M. Liu, S.-H. Han, Y.-Y. Zhu, P. Chen, Y. Chen, Reduced graphene oxide supported PdNi alloy nanocrystals for the oxygen reduction and methanol oxidation reactions, Green Energy Environ. 3 (2018) 375-383.
    [68]
    H. Xu, P. Song, C. Fernandez, J. Wang, M. Zhu, Y. Shiraishi, Y. Du, Sophisticated Construction of Binary PdPb Alloy Nanocubes as Robust Electrocatalysts toward Ethylene Glycol and Glycerol Oxidation, ACS Appl. Mater. Interfaces 10(15) (2018) 12659-12665.
    [69]
    H. Xu, H. Shang, C. Wang, Y. Du, Ultrafine Pt-Based Nanowires for Advanced Catalysis, Advanced Functional Materials 30(28) (2020) 2000593.
    [70]
    H. Xu, H. Shang, C. Wang, Y. Du, Low-Dimensional Metallic Nanomaterials for Advanced Electrocatalysis, Adv. Funct. Mater. 30(50) (2020) 2006317.
    [71]
    C. Wang, H. Xu, H. Shang, L. Jin, C. Chen, Y. Wang, M. Yuan, Y. Du, Ir-Doped Pd Nanosheet Assemblies as Bifunctional Electrocatalysts for Advanced Hydrogen Evolution Reaction and Liquid Fuel Electrocatalysis, Inorg. Chem. 59(5) (2020) 3321-3329.
    [72]
    T. Wu, X. Wang, A. Emrehan Emre, J. Fan, Y. Min, Q. Xu, S. Sun, Graphene-nickel nitride hybrids supporting palladium nanoparticles for enhanced ethanol electrooxidation, J. Energy Chem. 55 (2021) 48-54.
    [73]
    S. Li, L. Zhao, J. Shu, H. Niu, R. Li, J. Zhao, H. Yang, J. Jin, R. Jin, Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation, J. Colloid Interface Sci. 610 (2022) 944-952.
    [74]
    J. Shu, R. Li, Z. Lian, W. Zhang, R. Jin, H. Yang, S. Li, In-situ oxidation of Palladium-Iridium nanoalloy anchored on Nitrogen-doped graphene as an efficient catalyst for methanol electrooxidation, J. Colloid Interface Sci. 605 (2022) 44-53.
    [75]
    Y. Bao, M. Zha, P. Sun, G. Hu, L. Feng, PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation, J. Energy Chem. 59 (2021) 748-754.
    [76]
    Z. Li, X. Xu, X. Lu, C. He, J. Huang, W. Sun, L. Tian, Synergistic coupling of FeNi3 alloy with graphene carbon dots for advanced oxygen evolution reaction electrocatalysis, J. Colloid Interface Sci. 615 (2022) 273-281.
    [77]
    J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang, X. Wang, J. Liang, J. Li, J. Liu, T. Zhang, Remarkable performance of Ir1/FeO(x) single-atom catalyst in water gas shift reaction, J. Am. Chem. Soc. 135(41) (2013) 15314-15317.
    [78]
    P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts, Angew. Chem. Int. Ed. 55(36) (2016) 10800-10805.
    [79]
    J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D.-j. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, High performance platinum single atom electrocatalyst for oxygen reduction reaction, Nat. Commun. 8(1) (2017).
    [80]
    Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed. 56(24) (2017) 6937-6941.
    [81]
    J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K.M. Lange, B. Zhang, Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction, J. Am. Chem. Soc. 140(11) (2018) 3876-3879.
    [82]
    T. Li, J. Liu, Y. Song, F. Wang, Photochemical Solid-Phase Synthesis of Platinum Single Atoms on Nitrogen-Doped Carbon with High Loading as Bifunctional Catalysts for Hydrogen Evolution and Oxygen Reduction Reactions, ACS Catal. 8(9) (2018) 8450-8458.
    [83]
    X.-P. Yin, H.-J. Wang, S.-F. Tang, X.-L. Lu, M. Shu, R. Si, T.-B. Lu, Engineering the Coordination Environment of Single-Atom Platinum Anchored on Graphdiyne for Optimizing Electrocatalytic Hydrogen Evolution, Angew. Chem. Int. Ed. 57(30) (2018) 9382-9386.
    [84]
    H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production, Angew. Chem. Int. Ed. 54(47) (2015) 14031-14035.
    [85]
    H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim, E.L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M.J. Yacaman, P.M. Ajayan, D. Chen, J.M. Tour, Atomic cobalt on nitrogen-doped graphene for hydrogen generation, Nat. Commun. 6 (2015) 8668.
    [86]
    Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications, Chem. Rev. 119(3) (2019) 1806-1854.
    [87]
    P. Rao, J. Luo, D. Wu, J. Li, Q. Chen, P. Deng, Y. Shen, X. Tian, Isolated Co atoms anchored on defective nitrogen-doped carbon graphene as efficient oxygen reduction reaction electrocatalysts, Energy Environ. Mater. (2022) doi: 10.1002/eem2.12371.
    [88]
    H. Zhang, J. Li, S. Xi, Y. Du, X. Hai, J. Wang, H. Xu, G. Wu, J. Zhang, J. Lu, J. Wang, A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction, Angew. Chem. Int. Ed. 58(42) (2019) 14871-14876.
    [89]
    L. Jiao, Y.X. Zhou, H.L. Jiang, Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting, Chem. Sci. 7(3) (2016) 1690-1695.
    [90]
    P.F. Liu, S. Yang, B. Zhang, H.G. Yang, Defect-Rich Ultrathin Cobalt-Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting, ACS Appl. Mater. Interfaces 8(50) (2016) 34474-34481.
    [91]
    L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction, Angew. Chem. Int. Ed. 55(17) (2016) 5277-5281.
    [92]
    H.Y. Wang, S.F. Hung, H.Y. Chen, T.S. Chan, H.M. Chen, B. Liu, In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4, J. Am. Chem. Soc. 138(1) (2016) 36-39.
    [93]
    J. Yang, C. Yu, S. Liang, S. Li, H. Huang, X. Han, C. Zhao, X. Song, C. Hao, P.M. Ajayan, J. Qiu, Bridging of Ultrathin NiCo2O4 Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study, Chem. Mater. 28(16) (2016) 5855-5863.
    [94]
    P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, X. Sun, Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation, Adv. Energy Mater. 8(15) (2018) 1703341.
    [95]
    H. Sun, L. Chen, Y. Lian, W. Yang, L. Lin, Y. Chen, J. Xu, D. Wang, X. Yang, M.H. Rummerli, J. Guo, J. Zhong, Z. Deng, Y. Jiao, Y. Peng, S. Qiao, Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Under-Coordinated Metal Centers for Accelerated Water Dissociation, Adv. Mater. 32(52) (2020) e2006784.
    [96]
    C. Dong, X. Zhang, J. Xu, R. Si, J. Sheng, J. Luo, S. Zhang, W. Dong, G. Li, W. Wang, F. Huang, Ruthenium-Doped Cobalt-Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer, Small 16(5) (2020) e1905328.
    [97]
    Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M.T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting, Adv. Mater. 29(17) (2017) 1700017.
    [98]
    A. Parra-Puerto, K.L. Ng, K. Fahy, A.E. Goode, M.P. Ryan, A. Kucernak, Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes, ACS Catal. 9(12) (2019) 11515-11529.
    [99]
    S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A.M. Asiri, Q. Wu, X. Sun, Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects, J. Mater. Chem. A 8(38) (2020) 19729-19745.
    [100]
    R.-Q. Li, B.-L. Wang, T. Gao, R. Zhang, C. Xu, X. Jiang, J. Zeng, Y. Bando, P. Hu, Y. Li, X.-B. Wang, Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting, Nano Energy 58 (2019) 870-876.
    [101]
    Y. Tong, Q. Sun, P. Chen, L. Chen, Z. Fei, P.J. Dyson, Nitrogen-Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting, ChemSusChem 13(18) (2020) 5112-5118.
    [102]
    X. Yu, M. Wang, X. Gong, Z. Guo, Z. Wang, S. Jiao, Self-Supporting Porous CoP-Based Films with Phase-Separation Structure for Ultrastable Overall Water Electrolysis at Large Current Density, Adv. Energy Mater. 8(34) (2018) 1802445.
    [103]
    Y. Luo, L. Tang, U. Khan, Q. Yu, H.M. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density, Nat. Commun. 10(1) (2019) 269.
    [104]
    X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu, Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting, Nat. Commun. 12(1) (2021) 1380.
    [105]
    J. Choi, P. Wagner, S. Gambhir, R. Jalili, D.R. MacFarlane, G.G. Wallace, D. L. Officer, Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO, ACS Energy Lett. 4(3) (2019) 666-672.
    [106]
    J. Choi, J. Kim, P. Wagner, S. Gambhir, R. Jalili, S. Byun, S. Sayyar, Y. Lee, D.R. MacFarlane, G.G. Wallace, D. L. Officer, Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel, Energy Environ. Sci. 12 (2019) 747-755.
    [107]
    Y. Wang, B. Liu, X. Shen, H. Arandiyan, T. Zhao, Y. Li, M. Garbrecht, Z. Su, L. Han, A. Tricoli, C. Zhao, Engineering the Activity and Stability of MOF-Nanocomposites for Efficient Water Oxidation, Adv. Energy Mater. 11(16) (2021) 2003759.
    [108]
    C. Liu, X. Huang, J. Liu, J. Wang, Z. Chen, R. Luo, C. Wang, J. Li, L. Wang, J. Wan, C. Yu, A General Approach to Direct Growth of Oriented Metal-Organic Framework Nanosheets on Reduced Graphene Oxides, Adv. Sci. 7(4) (2020) 1901480.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (363) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return